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SURVEY OF DIGITAL FILTERING

H. Troy Nagle, Jr.

ABSTRACT

A three part survey is made of the state-of-the-art in digital

filtering. Part one presents background material including sampled-

data transformations and the discrete Fourier transform. Part two,

digital filter theory, gives an in-depth coverage of filter categories,

transfer function synthesis, quantization and other non-linear errors,

filter structures and computer aided design. Part three presents

hardware mechanization techniques. Implementation by general-purpose,

mini-, and special-purpose computer are presented.
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I. INTRODUCTION TO DIGITAL FILTERING

Digital Filtering may be described as the process by which input

discrete-time sequences of numbers with discrete amplitudes are trans-

formed into output discrete-time sequences of numbers with discrete

amplitudes. The transformation process (the digital filter) may be

described as a set of difference equations which may be programmed on

a general-purpose computer, or realized with specially designed devices.

The Computer Model

An example digital filter is shown in Fig. 1. The input signal

ei(t) is in analog form and is sampled every T seconds by an Analog-

to-Digital Converter (A/D). The input samples ei(nT), n an integer, are

in binary 2's complement form and are supplied to the computing device,

which may be a general-purpose or special-purpose computer. The com-

puting device is programmed to calculate the filter output samples eo(nT)

which are fed to an output hold register. This register may actually be

considered to be part of the computing device. The output samples eo(nT)

are held in the register until a new output sample is calculated and sup-

plied to the output hold register. The D/A converter produces an ana-

log output signal eo(t) whose characteristic form is shown in Fig. 2.

The digital filter of Fig. 1 operates as follows: A pulse from the

digital filter control unit at t--nT instructs the A/D to calculate

ei(nT). However this sampled value of ei(t) is not available to the

computing device until time nT + Ta, where Ta is the total A/D

1-1
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conversion time. Once the input sample has arrived at the computing

device, the output sample is calculated and sent to the output hold

device at t=nT+Ta+Tc, where Tc is the computing time. Thus the output

eo(nT) is actually eo(nT+Ta+Tc). With modern technology, Ta+Tc can be

designed to take less than lps. Hence for sampling rates of up to

200KHz(T=5ps), T is much greater than Ta+Tc and hence,

eo(nT+Ta+Tc) - eo(nT).

The z-Domain Model

The digital filter of Fig. 1 has been examined and described from

a hardware or functional point of view. A mathematical model for this

filter is shown in Fig. 3 which employs the well known z-transform.

Fig. 3a demonstrates a discrete time model for the digital filter where

the switches labeled T represent impulse samplers and the block labeled

Gho(S) represents a "zero-order hold" device. Fig. 3b illustrates the

transfer function representation of the computing device itself. Fig.

3 differs from Fig. 1 in that the computing device of Fig. 1 uses the

amplitude of the input (and output) samples to calculate new output

samples eo(nt); Fig. 3 uses impulse functions weighted by the amplitude

of the input (and output) samples to calculate new output impulses

eo*(t). The impulse samples, zero-hold, and z-transform will be dis-

cussed in more detail later.

Scope of Digital Filtering

The digital filter models presented above were for conventional one-

dimensional processing of a single input variable. Although this con-

cept of digital filtering is most widely accepted, many other researchers
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have applied the label to more general schemes. Digital filtering in the

last few years has come to also mean optimal state estimation, discrete

Fourier transformation, high speed convolution, non-linear discrete

filtering, two-dimension image processing, random and multirate sampling,

block recursion, least-mean squares filtering, quantization optimization,

computer programming, and hardware implementation. All of these topics,

and others, will be introduced in what follows. Emphasis will be, how-

ever, on the standard case of linear, one-dimensional digital filtering.

A prerequisite to understanding the theory of digital filtering is a

mathematical background in sampled-data transforms, Fourier transforms,

convolution, discrete state variables and stocastic processes. Hence,

these topics are now reviewed briefly.



II. STANDARD Z-TRANSFORM

The most common sampled-data transformation is called the standard

z-transform. It is used to describe both the sampling process for the

digital filter input signal and the discrete transfer function of the

filter itself.

Impulse Sampling

The z-transform is used to represent mathematically a discrete-

time system. The discrete-time intervals are produced by periodic

impulse samplers. Consider Fig. 4. The Laplace transfer function G(s)

is an analog filter; its input is a Dirac delta function. The filter

output g(t) is periodically impulse sampled every T seconds. The

sampled output may be expressed as

g*(t) = g(t) E 6(t-kT)

k=O

(la)

co
= E g(kT) 6(t-kT)
k=O

1-7
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The Laplace transform of g*(t) is

2 [g*(t)] = G*(s) =

If we define z m eTS,

G*(s) =E

s - Inz ko

g(kT)e
-
kTs

=O

k=O

then

g(kT) z-k

Equation (lb) is the standard z-transform of g(t), or

G(z) Z[gst) - G*(s) = z g(kT)z

- ,nz
-T

Suppose that the analog transfer function G(s) is of the form

m
II

G(s)=K
i=l (s+ai)

n

j=I (bj)i=1 (e--bj)

(lb)

(2)

(3a)
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Where

-a
i

= complex zeroes of G(s)

-b -= complex poles of G(s)

s = a + jw - Laplace variable

K - Constant

n>m

If there are no repeated poles in C(B), then

G(s) - - (3b)
k-l s+bk

Where R
k

is the residue at pole -bk.

Since,

s+u ] = Z [aeut ae-u 
1-e-UTz-1

The standard z-transform of (3b) results in

n
G(z) = Z Rk

k=l -
1-e-bkTz-l 

A third representation of interest is found by noting that multipli-

cation of g(t) and c 6(t-kT) in the time domain corresponds to con-

volution of G(s) and T e-kTs = 1
k=o i in the frequency domain. Afterconvolution the result is l-eeTs

G*(s) = 1/2.g(O+) + 1/T Z G(+k 
(5k--co (s+js (5)
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where =2rs/T. Hence it is apparent that G*(s) is periodic in w, the
S

sampling frequency. It is required that G(jw) = 0 for I w I > ms/2 as

shown in Fig. 5 so that the frequency content of G(jw) will be preserved

in the primary strip of G*(jw). If this relationship is preserved the

envelope of G(jw) can be recovered from G*(jw). This phenomenon is

known as frequency aliasing.

The standard z-transform discussed above is best known of the

sampled-data transforms. The theorems and tables of z-transforms can be

found in any standard sampled-data text [1].

Hold Devices

In the previous section we have seen the sampling process used to

determine values of an input signal at discrete time intervals. The

inverse process of data reconstruction from these sampled signals is

accomplished by hold devices. Consider the problem of reconstructing the

signal g(t) given samples spaced T seconds apart. If we expand g(t)

in a Taylor's series

g(t) = g(nT) + g'(nT)(t-nT) + " (t-nT)2 + . . . (6)

for nT < t <t-nT ,,

where g'(t) = dg(t)

dt

The derivatives may be approximated by

g'(nT) = y (g(nT) - g(nT-T))

(7)

g"(nT) = 1 (g'(nT) - g'(nT-T)) , etc.
T
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If equation (6) is truncated to just one term, this reconstruction is

called a zero-order hold; if the first derivative is included, a first-

order hold; etc.

Zero-Order Hold [1]

The zero-order hold device in the mathematical model of Fig. 3

accepts an impulse modulated input eo*(t) and produces an output eo(t)

as shown in Fig. 2. The input eo*(t) may be expressed as

eo*(t) - z eo(kT) 6(t-kT).

k-o

Its Laplace transform is

E *(s) = E (z) = e(kT)z
'-
k

0 0 -. ' 0
k=o

The output (see Fig. 2) may be written

00 (8)
eo(t) = eo(kT)[u(t-kT)-u(t-kT-T). (8)

k=o

Its Laplace transform is

Eo(s) = Z (kT)[e-kTs - e'kTs_-Ts;

k=o s s

= E eo(kT)e-kT s (l-e-Ts

k=o s

- E (z) (l-e-T) 
6
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The transfer function of the zero-order hold device is

ho - . (9)Gho (s) Deo

( )
1-e-

T s

E *(s)

The frequency domain characteristics of Gho(s) are shown in Fig. 6.

Suppose that the sampling interval T is chosen very small. Then,

e T= 1-Ts +O(T2

l1-Ts

Then,

ho (S) 1 -(1 ) =T. (10)

This result is verified by noting in Fig. 6 that, for w<<wi/2 (or

T small), the magnitude function approaches T; also, the zero-order

hold introduces phase lag which is linear with frequency into the

system.

Discrete Transfer Functions [ 1 ]

In the mathematical model of Fig. 3, the transfer function of the

computing device is shown as

Eo(z) E *(s)
_-_- a =° G(z),

Ei(Z) Ei*(s)

From Fig. 3

Eo (s) - Ei*(s)G(s).
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Hence,

eo*(t) = [ Z e
i
(kT)g(t-kT)] £ 6(t-jT).

k=oc j=o

In this expression g(t-kT) may be replaced with g(JT-kT) due to the

Dirac delta function. Next, let i-j-k and replace the summation

index j with i as follows:

eo*(t) - E ei(kT) g(ZT).6(t-XT-kT).
Za--. -o

Since g(y) - 0 for y<O, the -k may be replaced by zero. The Laplace

transform of eo*(t) is

Eo*(s) = [ Z ei(kT)e-kT[ g(T)e-
10 k=o ][=0

= Ei*(s) G*(s).

Hence, the descrete-time transfer function of the computing device in

Fig. 3 is indeed

EO*(s)
= G*(s) = G(z).

.. Ei* (s)

Difference Equations [4]

The discrete transfer fincti.on of equation (11) is, in general,

the ratio of two polynomials in z--l

a0+alz-l++. .+an E(z) (12)
GW -1 n - (12)

l+blz +. · +b E(
- n

Ei(z)

where the coefficients ai and bj are real numbers (can be zero). An

equivalent expression for (12) is the equation
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Eo(Z) = aoEi(z) + a1 z-1E
i

(z) + . . . + anZ-nE
i

(z)

-blz- Eo (z) ..-bnz-nEo(z).

The infinite series for the z-transforms Eo(z) and Ei(z) is now

substituted into the above equation and the coefficients of like

powers of z- 1 are equated, yielding

e (kT) = a,e (kT)+a ei(kT-T)+...+a e (kT-nT)-bleo(kT-T)-...
o0 i I n lo

-bne (kT-nT). (13)

Note that z- 1 - e- T s which represent a time delay of T second. Equation

(13) may be programmed in the contfuting device of Fig. lIthe variable

ei(kT) is furnished by the A/D converter; delayed values of the input

ei(kT-nT) and delayed values of the output variable eo(kT-nT) are

stored in the computing device.

Equation (13) defines a programming scheme known as the direct

form. A block diagram of this form appears in Fig. 7.

Another programming scheme known as the canonical form is determined

below. The transfer function is expressed as

E (z) M(z)
G(z) - 0

M(z) Ei(z)

r·
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ei(k)I T ' 

a0 / ' 7'

eo(k)

Fig. 7. Generalized block diagram of the direct

programming form for a digital filter.
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where

E (z)
M(z) = a + a z-l+...+anz

M(z) _ 1

Ei(Z) 
l+blz-l+... +bnz

-
n (14)

The time-domain equivalent expressions for (14) are

m(kT)= e
i
(kT) -blm(kT-T) -... -bnm(kT-nT) (15)

e
o
(kT) = aom(kT)+alm(kT-T)+...+anm(kT-nT) (16)

Equations (15) and (16) are the difference equations to be used in

the canonical programming form. A generalized block diagram of this

form appears in Fig. 8.

Mapping Function

The standard z-transformation of an analog function in the s-plane

may be considered to be a mapping from the s-plane to the z-plane under

the rule

z = eTs. (17)

See Fig. 9. The mapping illustrates that the region of stability in the

s-plane (the left half-plane) corresponds to the interior of the unit

circle in the z-plane. In fact, the primary strip in the s-plane maps

onto the unit circle. All other strips also map to the unit circle



1-20

eo (k)

ei (k)

8. Generalized block diagram of the canonical
programming form for a digital filter.
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x/ e// ,)A = ° \ C I/z>-'l/ A /a /I z=l Re(z)

(a s/2 ( z-p=ej

(a) s-plane (b) z-plane

Fig. 9. s-plane to z-plane mapping.
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further illustrating the frequency aliasing problem of Fig. 5. Thus,

transfer functions which are stable in the s-plane will also be stable

after taking their standard z-transformation.

Frequency Response

The frequence response in the s-plane is evaluated by

IG(s) I s=j

/G~~S_ s=jw 0 < W < WB .

This corresponds to evaluating G(s) along the contour in the s-plane of

Fig. 9a. Some upper cutoff frequence WB is shown for illustration. In

the z-domain the contour follows the unit circle so that

I D(z) I z = ejwT

/D(z) z= ejO T 0 < W < B,

is used to calculate the frequency response of a discrete transfer function.

From equation (5) we see that D(z) is periodic in ws so that in practice

OB = ws/2 and the contour traverses the top half of the unit circle. Hence

db = 20 log ID(ejwT)I

=/D (eiwT)

will be used to calculate the frequency response of a digital filter.

(18)

0 < X < Us/2



III. SAMPLED DATA TRANSFORMATIONS

Sampled-data transformations are the techniques one uses t6 obtain

numerical solutions to integral and differential equations. Any linear

system's transfer function may be written as

G(s) - Y(s)
X(s)

Y(s) = Laplace transform of the output

X(s) = Laplace transform of the input.

Alternately the relationship between input and output may be described

as a differential or integral equation. Numerical methods may be

employed to solve these equations; these methods approximate the integral

and differential equations by difference equations. As we have seen pre-

viously the difference equations may be represented by a discrete transfer

function. The complete process is illustrated in Figure 10.

Numerical Approximations

Several numerical approximation techniques will now be presented,

some for differentiation and some for integration.

Backward Difference

The backward difference is a simple technique which replaces the

derivative of a function by

1-23
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Sampled Data

Figure 10. Relation between numerical approximations
and sampled data transformations.
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d y(t) Y (t) - y(t - T)
dt T

See Figure 11.

In the Laplace domain

sY(s) -s)

1 - -sT

T

. 1- z

T

Hence,

- e-STy(s)

T

D(z) = G(s)

S
1 - z- 1

T

Example. Find a discrete approximation for

G(s) = s
S + a

Y(s) = G(s) X(s)

sY(s) + aY(s) =,sX(,s)

(19)



1-26

y(nT)-y(nT-T)
I

I
I I

I I
I I

I I

I'
I

nT-T nT

(a) Backward Difference

x(t)

' I
I I

I I

I
I
I

I I
I

nT nT+T

+ T) - y(nT)

-o t

(b) Forward Difference

Figure 11. Difference Approximations.

x(t)

I

-.c t

1�
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or

dt y(t) + ay(t) = -- x(t).
Now letdt

Now let

d
d y(t) =

d
dt x(t)=

y(t) - y(t - T)
T

x(t) - x(t - T)
T

Therefore

) + ay(t) =
y(t) - Y(t

T

Evaluating at t = nT yields

y(nT) = 1
1 + Ta

(x(nT) - x(nT - T) + y(nT - T)) .

Employing equations (12) and (13),

D(z) = 1
1 + Ta

1 - z

1 - 1 -1
1 + Ta

x(t) - x(t - T)
T
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An alternate solution employs equation (19) as follows

D(z) =

1 -
T

-1
1 - z

T

-1
1 - z

a+
T

1 - z

aT + 1 - z- 1

D(z) = 1
1+ aT

-1
1 - z

1 - 1 Z-1

1 + aT

Forward Difference

A similar numerical technique approximates

d (t) y(t + T) - y(t)
dt y T

See Figure 11.
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This represents the equivalent Laplace domain approximation

eSTY(s) - Y(s)
sY(s) = .T

T

or

sT* e - 1
s =

T

. z- 1
s =

T

Hence,

D(z) = G(s)

(20)

S
z-1

T

Example. Find a discrete version of G(s) using the forward difference.

G(s) =
s + a

D(z) = s
s+a

z-1

T
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z. -1
D(z) =--

z-1 + a

T

1 - z- 1

D(z) =

1 + (aT - 1) z- 1

Rectangular Rule

Suppose now we try some numerical approximations to integrals and

compare results.

Left Side Rule. Let us determine the numerical approximation for

y(t) = it x(t)dt
o

Assume that the upper limit of the integral is t = nT. Hence

y(nT) = fnT x(t)dt . (21)
0

Figure 12a illustrates the rectangular rule using the left side of the

rectangles. Hence

n-l
y(nT) = T £

x(iT)
i=o

n n-i
y(nT+T) = T Z x(iT) = T Z x(iT) + Tx(nT)

i=o i=o

= y(nT) + Tx(nT)
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x(t)

A

(a)

/

Left

x t)

T T

Side Rule

7
X

i

i - -- W

T T

(b) Right Side Rule

Figure 12. The rectangular rule.

ta- saw.1I

.

-
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Therefore using equations (12) and (13)

Tz-
D(z) =-

1-z-l

T

z-1

Hence we have approximated the integration transfer function

1 T
s z-1

which gives the same results as equation (20) for the forward difference.

Right Side Rule. Figure 12b illustrates the use of the right side

of the rectangle in approximating equation(21). Therefore

n
y(nT) = T E x(iT)

i=l

n+l
y(nT + T) -- T 

i=l

n
x(iT) = T Z x(iT) + Tx(nT + T)

i=l

= y(nT) + T x(nT + T)

Letting n = n - 1

y(nT) = y(nT - T) +

Employing equations (12)

T
D(z) = 1 - z- 1

T x(nT)

and (13) one finds
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Hence, we have approximated the integrator

1 A T
s l-z-l

which yields the identical result of equation (19) for the backward

difference.

Trapezoidal Rule.

The trapezoidal rule takes the average of the left and right side

of the rectangles in Figure 12. Hence

T n-ly(nT) T nZl
i=o

[x(iT) + x(iT + T)]

x(iT) + T
n
Z x(iT) i

i=l

Using the results of the rectangular rule,

1
D(z) = -

2
Tz-1
l_-i-

T l+z-1

= 2 1-z
- 1

Thus we have approximated

1 - T 1 + z 1

s 2 1' - z--

This approximation is the familiar bilinear z - transform.

1

2

n-l
[ T Z

i=o

T
+ 1-z- ]
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Simpson's Rule

Simpson's Rule evaluates equation (21) by the following formula

y(nT) 
=
T [x(O) + 4x(T) + 2x(2T) + ... + 4x(nT - T)
3

+ x(nT)]

But

y(nT + 2T) = y(nT) + T [x(nT) + 4x(nT + T) + x(nT + 2T)]

Letting n -= n - 2 and following equations (12) and (13) yields

D(z) = T 1 + 4z
-

1 + z
-
2

3 1 - z- Z

Hence, we have approximated

1 ' T 1 + 4z- 1 + z- 2

s 3 1 - z

Note that this formulation is valid only at even iterations (n even).

Impulse Invariance

Suppose that we want to find a discrete equivalent filter for the

Laplace transfer function G(s). Further suppose that we desire the im-

pulse response of the discrete equivalent to match that of the analog

filter as shown in Figure 13.

g(nT) = d(nT)

Then
co

D(z) = E d(nT)z-n
i=O
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g

t

(a) Analog Filter

d(t)

*' 1 -"". 

No A - T

t

(b) Digital Filter

Figure 13. Impulse Invariance

x(t) = 6(t)
I

t

x(t

1
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co

I g(nT)z - n

i=O

= G(z)

which is the standard z-transform. Hence, for impulse invariance

D(z) = Z[G(s)] = G(z)

the digital approximation is just the standard z-transform of G(s).

Impulse Invariant Integrator

Let us find the digital equivalent of an analog integrator using

impulse invariance and the models of Figure 14. We know that

G(z) =Z[1 1

and that

-TsGho(s) = 1 - e T

for small values of T. Hence

Yd(z) = T

X(z) 1- z-

and we have again approximated

1= T
s 1- z

Therefore, the backward difference, the right side rectangular rule, and

the impulse invariant integrator all indicate equation (19) as their

equivalent sampled-data transformation.
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X(s) Y(s)

(a) Analog Integrator

·X .(s)(b) -/Digital Integrator) d(s)

(b) Digital Integrator

Figure 14. Impulse invariant integrator.
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Mapping Functions Summary

As a result of our analysis of some elementary numerical approxima-

tion techniques we have identified several sampled data mapping functions.

Standard z-Transform

The standard z-transform yields an impulse invariant filter the

mapping function for this transformation is

s = 1 In z . (22)
T

This mapping has been previously defined in Figure 9.

Backward Difference

The backward difference approximation for the solution of differ-

ential equations provides the following mapping

-1
s = 1 - z (23)

T

See Figure 15. Note that the region of stability in the s-plane maps

into the right half plane z- ] > 1 of the z- 1 plane. Since the region

of instability in the z- 1 plane is the interior of the unit circle,

stable analog filters will always result in stable digital equivalents.

In fact some unstable analog filters give stable digital ones. A major

disadvantage of this mapping is seen in the frequency response contour.

The jw axis in the s-plane does not map to the unit circle in the z- 1

plane (or the z-plane either). Hence, as we get farther from s = 0 or

z = 1 the more degraded will be our desired frequency response. Thus,
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(a) s-plane

B

a

Im( - 1
)

4

(b) z-
1
plane

Figure 15. Mapping s = 1 - z

T

I I I Re(z-1)

/

/,
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we must decrease T (increase fs) to improve this approximation.

Forward Difference

The forward difference approximation suggested the following

mapping

s = z - l . (24)
T

This mapping function is shown in Figure 16. Note that the left-half

plane in the s domain maps to the region to the left of z - 1 in the z-

plane. But the interior of the unit circle represents the stability re-

gion in the z-plane. Consequently, some stable analog filters will

give unstable digital ones. Unstable analog filters will also be un-

stable digital ones under this mapping. Yet a further disadvantage is

the same frequency contour encountered in Figure 15. Hence, this is an

undesirable mapping.

Bilinear z-Transformation

The trapezoidal integration approximation led to the sampled data

mapping

-1
s = 2 1 - z . (25)

T1+ Tz- l

This mapping is illustrated in Figure 17. Notice here that the entire

left-half s-plane maps to the interior of the unit circle in the z-

plane. Hence, all stable analog filters will result in stable digital

ones. Also, the jw axis in the s-plane maps to the unit circle in the

z-plane. However, the entire jw axis maps onto the unit circle which

causes a mismatching of frequencies. This is a direct result of the
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(a) s-plane

Im(z)

(b) z-plane

Figure 16. Mapping s =
T

a

Re(z)
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a

= 0

(a) s-plane

z)

(b) z-plane

Figure 17. Bilinear z-transform.

O= 0

z= 1
Re(z)
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characteristic that for a digital filter

Z =1 + C = O

Z = jl + C = Us/4

z = -l1 + = Us/2

as required by equation (18). For the bilinear z-transform the frequen-

cies in the z-plane (ID) are related to frequencies in the s-plane (wA)

by

ejwD T - 1 2j sin wDT

jwA =jT 2
ejwDT +1

2 cos wDT

2

or

iD =
2 tan 'A (26)
T

See Figure 18. Correction for this frequency scale warping may be accom-

plished by redesigning (prewarping) the critical frequencies of the de-

sired transfer function G(s) before applying the bilinear z-transform.

This transformation maps circles and straight lines in the s-plane

to circles in the z-plane. It works well for frequency characteristics

which are piecewise linear. It also insures that no frequency aliasing

can occur in the transfer function frequency characteristic because the

+jw axis does map into the upper half of the unit circle. Hence, the

bilinear z-transform is quite popular.
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WA

1 /Ideal

I

z I ~WD

2T

Figure 18. Change in frequency scale for bilinear

z-transform.
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Matched z-Transforms [2]

The standard z-transform of equations (3b) and (4) required a

partial fraction expansion of G(s) in order to complete the mapping

1 = 1
s +u 

1 - e-UTz
- 1

For the purpose of simplifying the calculations, the matched z-transform

maps the poles and zeroes (-bj and -aj of equation (3a)) to the z-plane

as follows:

s + a + z- 1 e-aT (27)

Hence the matched z-transform of equation (3a) is

G(z) = G(s)

s + ai = 1 - z leaiT

Ds + b = 1 - z le-bjT

m ( 1 --le-ai T
(1 -z e

Ki= 1K (28)
n (- 1 -z- e(28-a T

j =1

where K is adjusted to give the desired gain at d.c. (z = 1). This

transform matches the poles and zeroes in the s and z planes. Note that

the poles of this transform are identical with those of the standard z-

transform but that the zeroes are different. Because of this difference,

the matched z-transform may be used on nonbandlimited inputs. If G(s)

has no zeroes, it is sometimes necessary to multiply (1 + z-l)N, N an in-

teger, times the expression (28).
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Other Transforms

In general any transformation which maps the stable region of the

s-plane into the stable region of the z-plane may be used. It is help-

ful for the jw axis in the s-plane to map to the z-plane's unit circle.

Another important property is that rational functions G(s) should be

transformed into rational functions D(z) so that the proper difference

equations may be determined for realization.

Simpson's Rule

The Simpson's Rule approximation suggested that the mapping

s = 3 1 - z (29)

T -1 -2
1+ 4z + z

be used as a transformation. The analysis of this mapping is left as

an exercise for the reader. Please note that a second-order function

G(s) will transform to a fourth-order D(z). This is undesirable from a

digital hardware viewpoint.

(w.v)-Transform [14]

In some applications, the system transfer function G(s,z,z") may be

a function of s, z = eT s , and za, where 0 < a < 1. If all initial con-

ditions are zero and

w = 2 1 - z
T l+z - L

v(a) = 1 - ( 1 -z - 1) + a(a - 1) 2(1 - z-)2 ,

2
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then for a system described by

Y(s) = G(s,z,za) X(s)

its z-transform will be

Y(z) = G(w,z,v(a)) [ X(z) - x(O) ]L
1 + z1

If x(0) = 0, then

D(z) = G(s,z,za)

s =w

za = v(a)

This completes the definition of the (w,v) transform.

Example. Scott [15] has shown that a desirable phase lock loop

has the transfer function

G(s) = 10
s + lOz

Using the (w,v) transform to find a digital equivalent if x(0) = 0

10
D(z) =

s + 10z- 0 .5

w = 2'1 - z-l

T 1 + z-

z 0--= v(0.5)

v(0.5) = 1 - 0.5(1 - z ) + 0.5(-0.5) (1 - z-)
2

= 0.375 + .75z- 1 _ .125z- 2

D(z) = 5T(1 +z- 1 ) 
(1 + 1.875T) - (1 - 5.625T)z- + (3

'
1 2 5 T) z - (625T)z-



IV. DISCRETE STATE VARIABLES [5]

An nth order discrete-time system is generally described by diff-

erence equations. The difference equation description of the system

dynamics may be alternately presented in vector matrix (state variable)

form by the following set of first-order difference equations.

x(kT + T) = Ax(kT) + Bu(kT)

y(kT) = Cx(kT) + Du(kT), (30)

where x(kT), u(kT), and y(kT) are vectors of the discrete state variables,

input variables, and output variables respectively. The symbol T is the

sampling period and k is any non-negative integer.

For the purpose of simplifying the notation, the sampling period

T shall hereafter be omitted from the equation; thus, equation (30) be-

comes

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (31)

The solution of equation (30) can be found by rewriting the first

of equations (31) in standard z-transform notation:

z X(z) = AX(z) + BU(z) + zx(O),

where x(O) is a vector of the initial condition of the state variables.

Solving for X(z) produces

(z) = (zI - A)-lzx(O) + (zI - A) BU(z). (32)
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The inverse z-transform (Z-1) of (zI - A)-lz is

Z-l[(zI - A)-lz] = 4(k) = Ak

Therefore, the inverse z-transform of (32) yields

k k-l 1n
x(k) = Akx(O) + Ak-l- n() (33)

n=O

This solution demonstrates that the present state of the system x(k) is

dependent upon the initial state x(O) and the system inputs u(n) from

the initial time (t = 0) to the present time (t = kT).



V. CONVOLUTION

In this section a review of continuous and discrete linear systems

is presented. The equations are discussed in rapid succession.

Continuous Linear Systems

Figure 19a illustrates the conventional continuous system under

consideration. Any linear system obeys superposition and is characterized

by the impulse response g(t, i), the response at time t due to an impulse

at i. Hence

co

y(t) = f x(E)g(t, C)dE, (34)

which is called the superposition integral. If the linear system is

shift invariant then

g(t, i) = g(t - 6)

and equation (34) becomes

co

y(t) f= x(C)g(t - E)dE, (35)

. x(t)*g(t)

which is the convolution integral.

But, by definition of the Laplace transform

oo

Y(s) = f y(t)e-stdt .
0

1-50
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System

(a) Continuous System

System -_- y(nT)

(b) Discrete System

Figure 19. Convolution.

x(t) i.p y(t)

x(nT)
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Taking the Laplace transform of equation (35) produces

Y(s) = G(s)X(s),

where

G(s) = f g(t)e-st dt
0

is called the system transfer function;

and G(jw), the frequence response of the system.

Discrete Linear Systems

Figure 19b illustrates the conventional discrete-time system under

consideration. The linear discrete system also obeys superposition and

is also characterized by the impulse response d(nT, kT), the response

at time nT due to and discrete impulse 6(kT), where

6(kT) = 1 if k = 0
(36)

=0 if k 0

and

x(nT) = X x(kT)6 (nT - kT)
k=O

By superposition

co

y(nT) = E x(kT)d(nT, kT), (37)
k=O

which is called the superposition sum. If the system is shift invariant,

then
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d(nT, kT) = d(nT - kT)

and equation (37) becomes

co

y(nT) = X x(kT)d(nT - kT),
k=O

A x(nT)*d(nT)

(38)

the convolution sum. But by definition of the standard z-transform

co

-k
Y(z) = X y(kT)z .

k=O

Taking the z-transform of equation (38) produces

Y(z) = D(z)X(z)

which is the identical result in equation (11). Hence, D(z) is called

the discrete system transfer function and D(eJWT) is called the frequency

response (see equation (18)).



VI. DISCRETE FOURIER TRANSOFRM

This section examines the properties of continuous Fourier trans-

forms and derives the discrete approximation.

Continuous Fourier Transform

The Fourier transformation may be defined by

G(f) = f g(t)e-Ji 2 ftdt (39)
_oo

and the inverse Fourier transform as

g(t) = f G(f)eJ2 rftdf . (40)
_co

The similarity between equations (39) and (40) is illustrated by the

summary of Fourier transform pairs listed in Table 1.

Another useful property of Fourier transforms is shown below:

f 1g(t)2 dt = f IG(f)12 df. (41)

This is known as the Fourier Integral Energy Theorem.

Discrete Fourier Transform [6]

Sampling Process

In Figure 4, an impulse sampler was presented which sampled a

signal for t > O. However, if the signal is zero for negative t, the

following sampling function produces the same effect:

1-54
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TABLE 1. Fourier Transform Pairs

Time Function Fourier Transform

g(t) G(f)

6(t)

1

u(t + A) - u(t
2

1

6(t)

Asin~rAf

rrAf
A
2

u(f + - u(f -2

6(t + A) - 6(t - A)

2 cosrAt

dg(t)
dt

-j2rtg(t)

t
f g(x)dx
0

g(At)

Agl(t) + Bg2(t)

g(t + A)

e2At g(t)

g(t)*x(t)

g(t)x(t)

2 cosrAf

6(f + A) + 6(f

j2TifG(f)

d
dfG(f)

G(f)

j2rf

1 G(f)
A A

AGl(f) + BG 2 (f)

ej2 GfAG(f)

G(f + jA)

G(f)X(f)

G(f)*X(f)

O0

I 6(t - kT)
k=-I

1 ki (fk
1 T 6(f -
T k= -'

AsinwAt
rtAt

A
2
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A(t) = X 6(t - kT). (42)
k-co

From Table 1 the Fourier transform of A(t) is

F[A(t)] =1 6(f k)
Tk=cO

In order to verify this result we may note that F[A(t)] is periodic and

may be expressed in a Fourier Series as

F[A(t)] : cne

where
1
2T j2rnTf

c
n
= T 1 F[A(t)]eJ2n Tfdf

2T

2T
c =T f df = 1
n1 T

2T

Hence

-j 27rnTf
F[A(t)] = e

as expected from equation (42).

Suppose the sampling function in equation (42) is multiplied by

an input signal g(t) to produce the sampled signal
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g*(t) = g(t)A(t)

-= g(kT)6(t - kT).
k= -o

As illustrated in Figure 5, if B/2n, the highest frequency in the

sampled signal is less than fs/2, then recovery of the original signal

is possible with an ideal low-pass filter whose cutoff is fs. To

recover the signal, gr(t) we multiply G*(f) by a square window function

Fep (f) .

Gr(f) = G*(f)Ftp(f) (43)

Since multiplication of Fourier transforms represents convolution in the

time domain

gr(t) = g*(t)* sin(rt/T)=rt/T

g(kT)6(t - kT)1 * sint/T/) 

co sinj(t-k T)
gr(t) = g(kT)- 

k=- r t - kT)kT)

If fs > B/r, the low pass filter is ideal, and the samples g(kT) are

exact, then

gr(t) = g(t) .
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However, the samples are never exact, no signal is ever bandlimited, and

no low-pass filter is ideal. Therefore, we can't exactly recover a

sampled signal.

DFT Derivation

Now discrete versions for (39) and (40) will be determined. Define

the following conditions for (39):

fs = sampling frequency

T = 1/fs = sampling interval

g(t) = 0 outside the interval t = [0,NT]

N = an integer, the number of sample points

G(f) is bandlimited to + fs/2.

Please note that these conditions can never be completely satisfied.

With the time-limited function g(t), G(f) cannot be bandlimited. In

practice it can get quite small as jfI increases. However, since a

function is never time and bandlimited, the time and frequency samples

are corrupted by aliasing.

Using the above conditions in equation (39) one obtains

NT
G(f) = f g(t)e-J 2 ftdt

0

Using the rectangular rule for numerical integration

N-l
G(f) = T I g(kT) e-j2ifkT . (45)

k=O
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The discrete version of equation (39) will compute samples of G(f)

every Af = fs/N = 1/NT Hertz. Substituting f = nAf into equation (45)

N-1
G(nAf) = T I g(kT)e-

ji2 nAf k T

k=O

or

N-1
G(n/NT) = T . g(kT)e

-
j(27/N)nk

k=O

In another form

N-1
G(n/NT) = T I g(kT)Wnk

k=O
(46)

where

W = ej 2 / N

Since g(t) = 0 outside the interval O<t<NT, one can construct

a periodic function h(t) from g(t), with period NT:

h(t) = I g(t - mNT),
m---

which may be written

t
h(t) = f g(T)

0
6(t - mNT - T)dT

= g(t)* I
m=--

(47)

6 (t - mNT)
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where the * denotes convolution. Since G(f) is bandlimited to fs/2,

so is H(f). Therefore,

H(f) = G(f)[l/NT I 6(f - m/NT)]

m=-NT/NT
NT

m-- o NT 

and

f D

.H(f) = I H'(m/NT)6(f - m/NT) ,
m=--00

(48)

where H(f) is the continuous Fourier transform of h(t). The weighting

function H'(m/NT) in equation (48) is defined below:

H'(m/NT) = (1/NT)G(m/NT) . (49)

Equation (46) may be inserted'in (49),

N-1
H'(m/NT) = (1/N) I g(kT) W

-
mk (50)

k=0

From (47),

g(kT) = h(kT): k=0, N-1.

Therefore (50) becomes

N-1

H'(m/NT) = (1/N) I h(kT) W - k (51)
k=0
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IDFT Derivation

The inverse discrete Fourier transform is found by considering

equation (40)

h(t) = f H(f)eJ2 ftdf.
wO

Under the conditions of the previous section

1/2T
h(t) = f H(f) e J2 ftdf (52)

-1/2T

since H(f) is bandlimited to fs/2 = 1/2T.

Substituting equation (48) into (52) and evaluating at t = kT,

1/2T
h(kT) = f i H'(m/NT)eji2fk T6(f - m/NT)df

-1/2T m=->

Since the integrand is periodic (1/T) in f,

h(kT)= (m/NT)e
j
(2 /N)mkh(kT) f I H'(m/NT)e 6(f - m/NT)df

0 m=-o

The limits of integration truncate the sum to

N-1
h(kT)= H(m/NT)Wk (53)

m=O

The prime is dropped in equations (51) and (53) for convenience, and the

resulting relations are



DFT
N-1

H(m/NT) = (1/N) E h(kT)W'mk
k=O

IDFT
N-1

h(kT) = I
m=O

H(m/NT)Wmk

These equations define the discrete Fourier transform pair. This

transform may be thought of as a mapping of N points in the time domain

to N points in the frequency domain.

DFT Pairs

Although equations (54) and (55) are discrete approximations of

(39) and (40), we can show that they form exact transform pairs.

From equation (54),

1
H = j [W] hN (56)

where H and h are

and time domains,

[W] =

vectors constructed of the N samples in the frequency

and

1 1

1 W- 1

1 W- (N- l)

. . . 1

w .. -2 (N-l)

. . . W-(N-1)2

(57)

From equation (55)

h = [W*] H
(58)

1-62

(54)

(55)
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where [W*] is the complex conjugate of [W]. In order to prove that the

transform pairs are exact one must show that

[W 1 = 1 [W*] 
N

(59)

This proof follows:

Let

[P] = [W] [W*]

then a general element of [P] is

P.m = [1 W- (-1)... W- ( N - 1) (. - 1 ) ]

1I
= 1 + W - (-m) + ... + W- ( N

-
l ) (l-m)

1

w(m-l)

w(N-l) (m-l)

Then all diagonal elements of [P]

PtQ = 1 + 1 + ... + 1 = N

and the off diagonal elements

Pem = 1 m = .

Hence

[P] = N[I]

and the exact relationship is proved.

I
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A summary of DFT pairs is listed in Table 2. Several other

interesting relations are displayed below:

N-1

h(0) = Z H(m/NT) (60)
m=0

N-1
H(O) = (1/N) X h(kT) (61)

k=0

and

N-l N-l

I Ih(kT) 12 = IH(m/NT) 2. (62)
k=0 m=0

This last relation is known as Parseval's Theorem.

Fast Fourier Transform

Calculation Time

The fast Fourier transform (FFT) is a high speed technique for

calculating the DFT. If the number of samples N may be written

N = rlr2...rn ri an integer

then

[W] = [W1] [ W2 ]''' [ W n] (63)

where [Wi] is an N x N matrix with only riN non-zero elements. The

calculation of

1
H = N [W] h

H 
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TABLE 2. DFT Pairs

H(m/NT)

Ah
l

(kT) + Bh
2
(kT)

h(kT - nT)

h
l
(kT)h 2 (kT)

h*(kT)

h(-kT)

6(kT)

6(kT - nT)

N-1
1 E hl(t + k)h 2 (t)
N t=o

AH(m/NT) + BH(m/NT)

W-mnH (m/NT)

Hl(m/NT) *H
2

(m/NT)

H* (-m/NT)

H(-m/NT)

1/N

(1/N)W-mn

H1 (m/NT)H
2
(-m/NT)

h(kT)
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requires N2 operations of complex multiplication, whereas

H 1 [hW1][W2]... [W I (64)

rnN operations

requires (rl + r2 + '-. + rn) N operations. For the special case ri = 2,

N = 2n, the total number of operations is

#oper = (2 + 2 + '-- + 2)N

= 2nN

= 2Nlog
2
N . (65)

Example. Compare the time to calculate the DFT and FFT of a sequence

of 1024 samples of a time function given that a typical computer cal-

culates a complex multiplication in about 40ps

DFT:

Calc. Time ' N2(40ps)

= 1.053 x 106 x 40 x 10-6

= 42.1 seconds

FFT:

Calc. Time 2Nlog2N(40ps)

= (2048)(10)(40 x 10-6)

= .82 seconds
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FFT Derivation

Since the DFT is a linear operation and N = 2 , we may break equation

(54) into two functions, the even samples and the odd ones:

(N/2)-m
H(m/NT) = 1 [h(2kT)W

-
2mk + h(2kT +T)W-2 mW

-
m

]

N k=O

(N/2)-l -m (N/2)-1
= --2mk )W h(2kT+ T)W-2 mk

N k=O N k=O

or

H(m/NT) = DFT[h(2kT)] + W-mDFT[h(2kT + T)] (66)

for m = - 1. But

N
-.m -'W N -M

w 2 = W-mW -W =W

W2(m + -) = W-2m

Therefore, the remaining samples may be determined by

(N/2)-1 2mk
H(m/NT + 1/2T) = 1 h(2kT)W 2

N k=O

-m (N/2)-1 -2mk
w W ) h(2kT +T)W
N k=O

or

H(m/NT + 1/2T) = DFT[h(2kT)] - W-mDFT[h(2kT + T)] (67)
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N
for m = 0, 2 - 1. The above equations may be successively applied in

order to achieve the maximum reduction in computation time indicated

by equation (65). The technique of dividing the time samples into

even and odd parts is sometimes called "decimation in time." The FFT

of eight-points is illustrated in Figure 20.

Note that the time samples are entered in "bit reverse" order:

binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

bit
reversal
000
100
010
110
001
101
011
111

0
4
2
6
1
5
3
7

IFFT Derivation

Since the IDFT is a linear operation and N = 2n, we may separate

equation (55) into two functions, the even samples and the odd ones:

(N/2)-1 2mk 2mk k
h(kT) = I [H(2m/NT)W + H(2m + 1/NT)W Wk]

m=O

(N/2)-1 (N/2)-1 .

I H(2m/NT)W2mk + Wk I H(2m + 1/NT)W2 mk
m=0 m=0

or

h(kT) = IDFT[H(2m/NT)] + WkIDFT[H(2m + 1/NT)], (68)

for k = 0, N- 1. But
2
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N N
Wk + kw = _Wk

W2(k + N) = W2 kWN = W2k

Therefore the remaining samples may be calculated by

NT (N/2)-l (N/2)-l 2mk
h(kT + -) = H(2m/NT)W H(2m + 1/NT)W

m=0 - m=0

or

h(kT + ) = IDFT[H(2m/NT)] - WkIDFT[H(2m + 1/NT)] (69)

for k = 0, 2- 1. The repetition of this process yields the algorithm

for the IFFT. The above derivation is sometimes called "decimation in

frequency."

Equations (66) through (69) suggest an algorithm for calculating

the IFFT as shown in Figure 21. In this figure the equations (68)

and (69) are employed at each stage of the transformation of eight

frequency samples into eight time samples. Note that the frequency

samples are again inserted in "bit reverals" order.

The reader will please note the similarity of the Figures 20 and

21. The basic element is sometimes called a "butterfly" as shown in

Figure 22. The gains on a few multipliers are different. This structure

suggests the mechanication of FFT hardware.
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a- b

b=a+c
d= a- c

c X d
-1

Figure 22. Butterfly structure.



VII. RANDOM PROCESSES

In the analysis and synthesis of digital filters one frequently

encounters signals which are random in nature that must be examined

with special techniques.

Continuous Processes [6]

If G(f) is the Fourier transform of a continuous signal g(t), the

power density function or power spectrum may be defined as

gg(f) = lim { A IG(f) }
gg A-~

The auto correlation function

A
lgg(T) = lim f g(t)g(t + T)dt.

A- A 0

These two functions form a Fourier transform pair

O0

Tgg(f) = f Pgg(T) ej2 fTdT

Both the power spectrum and the auto correlation function are real and

symmetric.

Discrete Processes [16]

For the discrete case, the cross-correlation function is first

defined

1-73
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N-1

Py(kT) =im N E y(nT)x(nT + kT)
N-+~ n-0

When both functions are the same (x = y), the cross-correlation becomes

the auto-correlation

N-1

*,x(kT) = lim N I x(nT)x(nT + kT).
N+x n=O

The auto-correlation function evaluated at k = 0 yields

N-1

xx(O) = lim N I x (nT)
N-w n=O

= x2 (kT)

the mean squared value of the signal x(kT).

Since the power spectrum is the Fourier transform of the auto-

correlationswe see from Table 2 that

xx(m/NT) = X(m/NT)X(-m/NT)

if the signal x(kT) is time limited in the interval [0, NT]. Therefore

'xx(m/NT) = IX(m/NT) 12 .

The Fourier transform of the discrete cross-correlation function is

xy (m/NT) = X(-m/NT)Y(m/NT)

and is sometimes called cross power spectrum or cross-periodogram.
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Lastly, consider the discrete system of Figure 13b with a random

input whose power spectrum is known. We may find the mean squared

value of the filter's output by the following:

y2(nT) x(Z)D(z)D(z)D(l/z)dz/z
2 TrJ r x

where

r = the unit circle

xx(Z)= xx(kT)z
-
k

k=O

= power spectrum
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I. DIGITAL FILTER CATEGORIES

The generalized transfer function of a digital filter has been

shown to be the ratio of two polynomials in z. Generally the coefficients

of the polynominals are real numbers which must be determined in some

manner to force the digital filter transfer characteristics to meet

some criteria. The manner in which the coefficients are found as well

as other considerations (for example, implemention details) allow us

to categorize digital filters into several classifications. In this

chapter we examine non-recursive, recursive, and several other major

categories for digital filters.

Non-Recursive Filters

General

Non-recursive digital filters are those whose transfer function

can be written as

m
D(z) = aiz - i (1-1)

i=O

Non-recursive filters have no feedback terms, and hence they have a

finite impulse response. They are sometimes called transversal filters,

a name used for delay line filters in radar moving-target-indicator

applications.
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Much emphasis has been placed on these filters in the literature

and several design techniques will now be illustrated.

Finite Impulse Response Fllters [1]

Finite impulse response (FIR) filters satisfy equation (1-1).

Consider the first order filter

H(z) = 1a < 1
1 - az-l

= 1 + az
-
1 + (az-1)2 +

l=0= ( (az )

Suppose we truncate the series to M terms to produce the FIR below

M-1

HM(z) = X (az) (1-2)
Z=o

Also,

HM(Z) 1 - (az- M zM - M
HM(Z)= = (1-3)

1- az
- 1 zM-l (z - a)

This is another way of expressing the FIR as filter with feedback.

Fig. 1 illustrates the z-plane pole-zero locations for both H(z)

and HM(z) for M = 8. Fig. 2a shows the implementation of (1-2);

Fig. 2b, (1-3).
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Fig. 1. Pole-zero Plots in the
z-plane.
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y(kT)

1

(a)

(b)
a

Fig. 2. Block Diagrams for (1-2) and (1-3)

x(kT)

x(kT)
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Fast Convolution [2]

Fast convolution is a technique which employs the FFT and IFFT

to determine the filter output response (see Fig. 3a). Direct convolu-

tion is expressed by

N-1
y(kT) = I h(ZT)x(kT - tT). (1-4)

t=0

To calculate N output points, this requires N2 real multiplications.

For fast convolution

y(kT) = IFFT{H(--) 'FFT(x(kT))} . (1-5)
NT

Here the FFT and IFFT require 2Nlog2 N operations each, while the multi-

plication requires N operations. This totals

# operations = N(4 log
2
N + 1).

If each operation (a complex multiplication) is assumed to take approxi-

mately 4 real multiplications, the result is

# multiplications = 16 N log
2

N. (1-6)

Suppose N = 1024, then N2 Z 106 and 16 N log2 N - 1.6 x 105. Hence,

for large numbers of output points, the fast convolution technique

is faster than direct convolution.
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NT
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NT
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(b) Convolution of h(t)*x(t)
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x(kT)

y(kT)
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Fig. 3. Fast Convolution
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The reader must be careful in using the fast convolution technique

because the results can be misleading. Consider the convolution of

the analog signals in Fig. 3b. If we sample these signals and use

the FFT and IFFT, we are convolving the periodic functions shown in

Fig. 3c. Hence the output y(kT) can differ greatly from the desired

sequence.

In order to improve the results one may add zeroes into the input

and transfer function sample sequences as shown in Fig. 4. Note the

improved output response. However, in adding zeroes we have increased

the calculation time unless we modify the FFT algorithm.

Linear Phase Filters [3]

A linear phase filter is an FIR filter with exact linear phase.

They may be used to approximate an arbitrary magnitude frequency

response without causing phase errors. The linear phase filter is

good for standard lowpass, bandpass, and highpass filters.

If the number of sample points in a FIR filter is

N = 2T + 1,

then linear phase with delay T is realized if and only if

h(kT) = h(NT - T - kT) (1-7)
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Hence, for N even

1. There is no unique peak in h(kT)

2. h(kT) = h(NT - T - kT) k = O, (N) - 1

3. The center of symmetry is between (N) and (?N) - 1.

4. The delay is

N-lT =N - -
2

the center of symmetry.

For N odd

1. There is a unique peak in h(kT) at (N - 1)/2.

2. h(kT) = h(NT - T - kT) k = 0, (N - 1)/2

3. The center of symmetry is at (N - 1)/2

4. The delay is

N- 1

the center of symmetry.

If the above conditions are met, the frequency samples H( ) will be

given by

H(<) -= H() I ejOm

where, for N even

em = L .mT
Nm 

8m 2- (N -m )
N

m = O, (2) - 1

m = (N), N
2

(1-8)
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and for N odd

o = _ 2 mT
m N

m = 0, (N - 1)/2
(1-9)

em = 2 (N - m) T m = (2) + 1, N .
N 2

and

1 f
H(-l ) = H(-) = 0 .

2T 2

This concludes our brief description of linear phase filters.

(1-10)

Frequency Sampling Filters [3]

The term frequency sampling filters refers to a class of digital

filters specified by sample points in the frequency domain and imple-

mented in the manner of Fig. 5. Many techniques have been suggested

for choosing the sample points

H( m) = IHmI ejOm m= 0, N - 1 (1-11)

including optimization techniques which adjust the points in the

transition region to give a good ripple between sample points. For

real impulse response filters
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IHmlI = IHNm 

m N-m

By the IDFT

N-1

h(kT) = I H(--m) ei(2r /N ) mk

m=O NT
k = 0, N - 1

and

N-1
H(z) = I h(kT)z- k

k=O

where

H(z)

z = e j 2 m / N

= H(-)
NT

Then

N-1 rN-1
H(z) = i X

k=0 m=O

H(z) = (1 - z-N)

H NT )

N-1

m=O

-k
z

H- z)

1 - -1 m

2-12

(1-12)

or

(1-13)
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where

W = e j 2r/N

Equation (1-13) is the motivation behind the frequency sampling

implementation illustrated in Fig. 5b.

Windowing Filters [4]

In equation (1-2) a truncation was performed (a fairly drastic

measure) to produce a FIR filter from an infinite impulse response

function. Windowing is the process of orderly termination of an

infinite series by truncating the series and adjusting the remaining

terms to mask the truncation effects. The transfer function for the

FIR is given in equation (1-1); its output response is

m
y(kT) = i aix(kT - iT).

i=O

Briefly stated, the problem is to find the coefficients a
i

of the

FIR filter H(z) such that

H(ej T ) z F(ej W T )

jwT
where F(e ) is some specified desired frequency response. The

design procedure is outlined below:
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1. From F(eJiT), use the IFFT algorithm to find f(kT).

2. Multiply f(kT) by a window function w(kT), or

h(kT) = f(kT)w(kT) (1-15)

The process is outlined in Fig. 6. Multiplication in the time domain

is convolution in the frequency domain, and hence

H(f) = F(f)*W(f) .

The window function shown is a rectangular one which duplicates the

truncation process. Notice the ringing effect in Fig. 6c. The side-

lobes for this window are about 20%. Fig. 7 illustrates two other

windows. The triangular one reduced the sidelobes to about 4%. The

raised cosine window is the best one shown. Its function is

Irt
w(t) = a + (1 - a) cos -- (1-16)

If a = 0.50 it is called a Hamming window. The optimal value of a is

about 0.54. This value yields the Hanning window and reduces the

sidelobes to about 1%.

Moving Average Filter [5]

A moving average filter is a FIR filter which calculates the

average of the N most recent observations of the input:
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F(eJ wT )

(a) Desired Frequency Response

W(w)

(b)

(c)

2A1
A

Window Function

H(e j T )

A

Windowing Filter

Fig. 6. Windowing Filter Construction

f - I /1
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w(t)

I1

:-A A 
I

I I
I I
I(a) Rectangular Window I

I I
I 1
lI 1

I I
1 I
-A AI -

A I

(b) Triangular Window

:I /w(t)
I1I

I

-A A

(c) Raised Cosine Window

Fig. 7. Window Functions

I 1

. t



2-17

N-1

y(kT) I x(kT- T)
£=0

and

N-1
H(z) = z 1

£=0

In another form

11z) Z
- N

H(z) = N -N (1-17)
1- z

Least Mean-Square Digital Filters [6,7]

Assume that the filter input is x(nT), a random signal whose

autocorrelation Rxx(t) is known, and that the crosscorrelation

Rdx(t) of this input and a desired output d(nT) is also specified.

Let the impulse response of the filter be g(kT), and its output,

z(kT). Allowing a shifted time scale,

N
z(nT) = I x(nT - KT)g(kT).

k=-M

Define the signal D to be expected value of the difference in the

actual and desired filter outputs squared:

D = E[d(nT) - z(nT)]2 .
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By definition

R (t) = E {x(t + T)X(T)}
xx

Rdx(t) = E {d(t + T)X(T)}

Rdd(t) = E {d(t + T)d(T)}

Substitution of these relations into D yields

D Rdd(O)

N
- 2 X Rdx(nT)y(nT)

n=-M

N N

+ Rxx(kT - nT)g(kT)g(nT).
k=-M n=-M

The purpose of the least-mean squares filter is to minimize D by

choosing g(nT). Hence, if one takes the partial derivative of D with

respect to g(nT) and sets the result to zero, the following solution

is generated

N
Rdx(nT) = I Rxx(kT - nT)g(kT) .

k=-M

-M < n < N

In equation (1-20), all quantities are known except g(kT). Hence,

the filter weights may be calculated from (1-20). Least mean-squares

filters are sometimes called digital Wiener filters.

(1-18)

(1-19)

(1-20)



2-19

Least Squares Polynomial Moving Arc Filter [5]

The problem here is to solve for the coefficients ai of a polynomial

to best fit the input data y(ti) in a least squares sense. Each input

point is approximated by

Y(ti) a0 + alti + a2 ti + + adtdi

d

= X ak tk i
k=O

If the input samples are evenly spaced, ti = iT and

d
y(iT) = E ak(iT)k

k=O

For n input samples define

rd k
S= X ak(iT)k - Y(iT) 

i=0 k=O

In order to minimize S by choosing ak, one may take the partial

derative

as = 2 ak(iT) - y(iT)] (T) =
aak ers r c =o

This expression reduces to

I'
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d d k

i I ak(iT) (tT)Z =
k=0 t=0

d

I y(iT) (tT)
R=O

Written in matrix form

CA = B

or

A = C-l1B. (1-21)

In (1-21) the matrix C- 1 represents the filter itself (whose coefficients

are precomputed) and B represents the system input. The output is A

which represents the polynomial coefficients ak.

Another form of polynomial filtering termed exponential filtering

allows the polynomial to grow by one term as each new input occurs.

Such schemes are called "growing memory" filters.

Digital Inverse Filtering [8,9]

Digital inverse filtering is a special case of least mean-square

filtering as described in equation (1-20). Suppose that the desired

filter output is

d(kT) = 1, 0, 0, 0, '

the discrete impulse function. Hence the crosscorrelation
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Rdx(nT) = x(O), O, 0, 0, -

which can be scaled to unity (x(O) = 1). Equation (1-20) with M = 0

then becomes

r1 r 2

r0 r1

rN

rN-1l

rN rN-1 N-2

O

Lo

(1-22)

where

ri = r i = Rxx(iT).

If the filter coefficients gi are used in an FIR filter

N
H(z) = I gi z - i

i=O

and the random signal x(nT) is applied to the input, the output will

be a digital impulse function. Therefore, H(z) is said to be an

inverse digital filter. The calculations involved are shown in Fig. 8.

ro

rl
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Rxx(iT)

d(kT)

(a) Filter Design

x(kT) 3 - - z(kT) : d(kT)

(b) Filter Application

Fig. 8. Digital Inverse Filtering

N -i

i E gi Z

i=O
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Recursive Digital Filters

General

A recursive digital filter is a filter with feedback which, in

general, has an infinite impulse response. Its transfer function is

n

aizi

H(z) = i=O (1-23)
n

1 + biz- i

i=l1

where at least one ai and bi is not zero.

Recursive filters generally require fewer terms (lower order)

than a non-recursive filter with similar characteristics. Higher

order recursive filters are usually factored into second order stages

which are either cascaded or paralleled.

Block Recursion [101

One technique for implementing a desired recursive digital filter

of the form

Hp(Z) = D(z) (1-24)

is called block recursion and is shown in Fig. 9. The implementation

in Fig. 9b is
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X(z) [Hp(z) 3 Y(z)

(a) The Desired Filter

HB(Z)

X(z~) Hz)B Y(Z)

FIR

l I

G(z) -M

FIR Block
Delay

- - - - - - - - - - - - - - - - - - I

(b) The Implemented Filter

Fig. 9. Block Recursion
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H (z)
H B(Z) H M (1-25)

1- z-MG(z)

But the desired filter is

1 m a

m-1
rn (- . ,-1 i=l 1- ziz

i=1
where zi are the poles of the function Hp(z).

The finite impulse response filter HM(z) is found by truncating each

component of Hp(z) to M terms, or

m ai[ l - (Ziz-1)M]

i=l 1 - ziz-1

M

) M m aizi
= Hp(Z) - z-M -1

i=l 1 - Zi

1 -z- Q(z)
(1-26)

D(z)

where

m a.zMD(z)
Q(z) 3 i i

i=l 1 - ziz

Thus,

HM(z)D(z) = 1 - z-MQ(z)
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and

Q(z) = zM(1 - HM(z)D(z)) (1-27)

where Q(z) is a polynomial of order M-1. From the above relations it

is clear that if G(z) in HB(z) is chosen as Q(z), then

HB(Z) = Hp(z) (1-28)

G(z) = Q(z)

and the block recursive implementation exactly produces H (z), the

desired filter. Thus, we have shown that a recursive filter can be

implemented using one FIR HM(z) in the feed forward path and one FIR

G(z) in the feedback path, where

HM(Z) = truncated version of Hp(z)

(1-29)
G(z) = zM (1 - HM(z)D(z)).

Some researchers have used the FFT to implement the two FIR filters

[11-13].

Example. Consider the filter

1 = 1
Hp (z) =Dz

1 + az
- 1 + bz

-
2 D(z)
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and let M = 3

a 1 - az 1 + (a2 b)z-2
1 + az- 1 + bz-2/ 1

1 + az'l + bz2

- az 1 -_ bz 2

_ az'l _ a2z-2 _ abz-3

(a2-b)z-2 + abz
-
3

Hence

H3 (z) = 1 - az
-
1 + (a2 -b)z

-
2

G(z) = z3(1 - H3 (z)D(z))

= (2ab - a3 ) + (b2 _ a2 b)z-1 .

One can check the impulse response of HB(z) by dividing the

denominator into the numerator and comparing it with Hp(z).

Flat Group Delay Digital Filters [14]

In order to achieve a linear-phase digital filter one must choose

a non-recursive structure. However, when the order of the non-recursive

filter is unacceptably larger, one is led to approximate the linear

phase using a recursive filter design whose error norm is the maximally

flat criteria.

Consider the recursive filter
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n
1+ X ai

H(z) = (1-30)

1 + aiz-i
i=l

whose d.c. gain is unity. The phase response (T = 1) is given by

X aisin i w

tan1 ain = ~( ) (1-31)

X aicos i w
i=O

The ideal phase (-UT), where T is the desired delay is approximated

by minimizing

6(m) = -WT - O(W) (1-32)

or

c(w) = tan(6(w)) = - tan WT - tan (O(w))

The procedure is to make s(w) vanish at d.c., together with its

derivatives up to some order depending on n.

The solution yields the filter
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2n! 1
H(z) n! 2n

Tn (2T + i)
i=n+l

(1-33)

n n 2k +i -k
I (-l)k () 1n 2T + k + i
k=O i=O

which is stable for all finite positive values of T.
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Advanced Topics

In addition to the simple division of digital filters into recur-

sive or non-recursive categories, there are many other ways of identifying

their characteristics.

Complex Digital Filters [15]

A complex digital filter has a complex input x(nT), a complex

output y(nT), and a complex transfer function H(z). An example is

shown in Fig. 10. A lowpass envelope is centered at fc by replacing

z by e-jwcT z = yz in H(z).

n

H(z) = Z
n

1 + X bz
-

l=1

Hence

HS(z) = (1-34)

1 + yttz -
l=1

Complex digital filters have application in communication and

information theory, signal detection, randomly time-invariant channels,

etc. In one application they are used to generate the Hilbert transform

of a real signal x(nT).
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H(f)

HS (f)

f

Fig. 10. Complex Bandpass Filter

j^~~~~~~~~~~~~~~~~~~~~~
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Randomly Sampled Filters [16]

A randomly sampled digital filter H(z) takes input samples of the

analog input signal x(t) at some random time

nT < tn < nT + T

and stores them in an input buffer. The numbers x(tn) are then fed

to the filter hardware as evenly spaced samples x(nT). Hence, the

direct convolution of x(nT) and h(nT) produces the output y(nT)

which is interpreted as y(tn). The question arises what errors are

generated by the random sampling?

Define

tn = (n + Zn)T

-A<Z < A
-n - (1-35)

= cT

O < a < 1

where Zn is a random variable. Also define

x(tn ) = xn = x(n + Zn)

(1-36)
x(nT) = xn
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If we expand xn in a Taylor series about Zn

n =xn + nZn + 1/2xnZ 2 +

d
where xn = d- xn ' and define an input error En

in =-Xn Xn nZn + 1/2n +...

The output error due to random sampling is defined as

n Yn Y in

en= Yn Yn = n hn-iSi

for a non-recursive filter. Other pertinent relations are

v 2 = E(Z2)

n4 = E(Z 4
)n

E(Cn ) = 1/2'xv2 + ...

E(2) = %2 + (1/4x 2

Exe)' = v hn(1/4)

(1-37)

+ l/3~x~x)n4 + ..

n
E(en) - I hn iE(i)

S - --- - i=O---

E(e2) = E2 (en) + n 2
hn-ivar(i) ·

i=O

c/
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The frequency response error is determined for sinusoid inputs

x(t) = cos Wt O <w < Nf

where Nf is the Nyquist frequency n/T. The expected values of the

output steady state errors are

E(en)ss = (-1/2w2 v2)H(ejW) cos nw

2 2 + V 2 04V4 _4v4
E(en )ss = E (en)ss + 2 ) (i _2 w4 4 _- 4v48

- O ij2) ( 2 ) sI h -ie'OW 2 24 8 cos2nw
i=O

The physical interpretation of the results is shown in Fig. 11, where

E(Hm(eJw)) = (1 - 1/2w2 v2 )H(ejw) (1-38)

In random sampling only the expected amplitude response is distorted

while the expected phase response is unchanged. The noise to signal

ratio for noise generated by random sampling is approximated by

NSR = 10 log 10 (1-39)



2-35

cos at H(z) Yn
(a) Exact 

(a) Exact Model

Cos wt t
T

(b) Approximate Model

Fig. 11. Randomly Sampled Filter

Yn
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Random sampling finds wide application in time-sharing filters,

radar filters, and faulty samplers - all samples are faulty to some

extent.

Example. [9]

H(z) = 0.1

1 - .9z 1

and Zn has a rectangular distribution with a = 0.1, or 10% jitter

in the input sampler. The curves of Fig. 12 illustrate that as

frequency increases, the noise component increases making the

filter unusable above w/Nf = 0.3

Multirate Digital Filtering [17]

A multirate digital filter is one in which the samplers for the

input and output are operating at different rates, one usually being

an integral multiple of the other. Much analysis of multirate sampled

data control systems has been treated in the open literature. Here

we examine three configurations of multirate filters demonstrated

in Fig. 13. Solutions for the sampled output frequency responses are

W (jo) = 1 X G(jw + j K-T) R*(jw + j 27T)

KT n= - -
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Fig. 12. Random Sampling Example
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R~s - / R*(s) Gs) W(s) / W*(s) / W**(s)R(s) G(s)
T T KT

fast slow

(a) Typical Multirate Filter

R(s) , R*(s) H(s)(s) s (s) X**(S)R~s) G(s)
T KT KT

fast slow

(b) Digital Prefilter

R(s) F(s) (s) Y**(s)
KT KT

slow

(c) Analog Prefilter

Fig. 13. Multirate Digital Filters
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**(J1) FJLwn j2Trn

Y**(jw) = 1 **(w)F(jw + j2Rn ) R(jw + j
KT n=-OD KT' KT

These expressions simplify greatly if the filter function G(s) is

band limited

IG(jw) I = 0 Iw > 2KT
KT

(1-40)

(1-41)

The functions H(s) and G(s) represent prefilters used to band limit

the input signal r(t) to prevent frequency aliasing.

Two Dimensional Digital Filters [18,19]

Two dimensional digital filters are used in digital image

processing. They are used to transform characteristics in photographs

or CRT images. The transformation is described by

H(Zlz2) =

amnzz2
m=O n=O

m=O n=O
m=0 n=0

A(z1 ' z2 )

B(z1 ,' Z2 )

(1-42)

and
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-eSlA

z2 e-s2B

where sl and s2 are Laplace variables; A and B are the sampling intervals

in the x and y planar coordinates of the image being processed. The

two dimensional filter may also be expressed as

H(zlZ2 ) = hmnzlz2 (1-43)
m=0 n-O

where hmn is the impulse response.

Let us consider the stability of a two dimensional digital filter.

For a stable filter

X Ihmnl < o (1-44)
m=0 n=0

A two dimensional digital filter is stable if and only if no value of

Z1 and z2 exist such that

B(zl,Z2 ) = 0, and

1Z11 < 1, and

z21 < 1.
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Equivalent conditions are listed below: H(zl,z2) is stable if and

only if

1) The map B(zl,z2) 0= of the unit circle Izlj = 0 to the z2

plane is outside the unit circle 1z21 = 1.

2) No point in Izll < 1 maps into z2 = 0; or z2 0= maps

outside the unit circle in the z1 plane.

Example. Given the two-dimensional filter

H(Z,1Z2) =
1

1 + az1 + bz
2

we may set the denominator to zero.

B(zl,z2 ) = 1 + azl + bz2 = 0

to determine the following map

=-l-a1 .
z2

Condition 1 is shown in Fig. 14.

r =jal

- l+ r < -1
b
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LIi

1

1
b

Fig. 14. Stability in Two-Dimensional
Digital Filters.

1
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or

lal + IbI < 1

for stability.

Condition 2 checks the point z
2
= 0 in the z1 plane:

1 a o = - - - -Zi

Z b - 1

Zi
a

but Z
I
must lie outside the unit circle, so

1- '1 > 1

lal < 1

which is included in condition 1. Therefore, the example filter

is stable if the sum of the magnitudes of the coefficients is

less than one.

Non-recursive two-dimensional digital filters may also be designed

using windows, just as their one dimensional brothers. If wl(x) is a

good one-dimensional window, then
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w2(x,y) = wl( /x2 + y2 )

will be a good two-dimensional window function.

Example. Consider the one-dimensional window

w(x) = 1 - Ix

= =0

xlI <1

Ixl > 1

Then

W(w) = sin2 (w/2)/(w2 /4)

which has sidelobes of about 4%.

The two-dimensional counterpart is

w2 (x,y) = 1 - Xx2 + y2

= 0 IX2 + y21 > 1

Then, in the frequency domain

W2(wlI'2) = 2n[p-3
p

Jo(t)dt-p2 Jo(P) ]
0

P = h 12 + on

which has sidelobes of only 2%.

(1-45)

1x 2 + y21 ' 1
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The reader is referred to the open literature where much two-

dimensional digital filtering theory is reported.

Adaptive Digital Filters [20]

A major advantage which digital filters hold over analog ones is

the ease in which a digital filter's coefficients may be changed while

the filter is processing data. Adaptive digital filters change their

coefficients to minimize some specified criteria. An example non-recursive

adaptive digital filter is depicted in Fig. 15a. The filter output is

K C(i)
d(iT) = X gk x(iT - kT) (1-46)

k=0

(i)
where gk are time varying coefficients calculated as shown in Fig. 15b.

(i+l) = (i) Ci)g(i+l) gk + C(i) x(iT - kT). (1-47)

The term £ (i) is found by subtracting the filter response from an ideal

response d(iT). The factor A is a variable step length which is

adjusted to improve the filter response in driving c(i) toward zero.

Floating Point Digital Filters

A floating point digital filter is one which is implemented by

a computing device which executes floating point arithmetic in calcu-

lating the filter's difference equations. Both the filter's coefficients

and the signal variables are represented in the following format
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x(iT-T) x(iT-KT)

he~i) E(i) _ d(ir)
Ideal

Response
ff+d (iT) Generator

(a) Filter Block Diagram

~A(i) |. - x(iT-kT)

g(i)

k

(b) Time Varing Gain Generation

Fig. 15. An Adaptive Digital Filter.
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F x RE (1-48)

where F is a fraction expressed in radix R and E is the exponent value.

R is usually 2 in 16-bit minicomputers but is 16 in IBM 360/370 machines.

Digital filters are not usually implemented in floating point for several

reasons. Floating point hardware is slower than fixed point and is

more costly. Perhaps a more important reason is that floating point

quantization errors in signal variables can cause system instability

whereas with fixed point arithemtic is guaranteed to be stable if the

filter coefficients yield stable poles in the z-plane.

Optimal Digital Filtering

Optimal digital filters are filters used to minimize some per-

formance.evaluation criterion set for the discrete filter. In this

section, three topics will be presented: 1) the concept of optimi-

zation, 2) the optimal control law, and 3) state estimation.

Concept of Optimization [21]. A system may be described by n

first order linear or non-linear differential equations in the

independent variables xl, x
2
, 'xn. Any system can be so described

by the introduction of the appropriate number of variables, henceforth

referred to as the state variables. The n differential equations are

x = f(x,u,t) (1-49)

Suppose that a function

-. At~~~I
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mT
V(u) = / L(x,u,t) dt (1-50)

o

is to be minimized by choosing the forcing functions u(t) or some

other system parameters. L represents the performance criterion

together with any terms which penalize or restrict the use of

forcing signals. The minimum value of V(u) is termed the cost.

A linear optimal system has the following characteristics:

(a) linear differential equations

(b) the performance criterion has a quadratic form in the

state variables and forcing functions

(c) unrestricted forcing functions and state variables.

Any system which does not possess all three characteristics is non-

linear.

Consider the linear system described by the following set of

first order differential equations:

i = Fx + Gu
(1-51)

y = Hx .

Now it is desired to calculate u(t) (given the initial values

x(O)) such that the cost function V(u) is minimized.

It is proposed to approximate the system by a discrete time version.

The time interval is divided into m equal sub-intervals T and the forcing

function u is to be held constant during each subinterval. The system
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is considered to be described by a sequence of transitions from the

(k-l)th to the (k)th state.

Solving the set of first order differential equations, we find

the following transition equation:

x(kT + T) = 4(kT + T, kT)x(kT) + r(kT + T, kT)u(kT) (1-52)

where

kT+T
r(kT + T, kT) A +(kT + T, T)G(T) dT.

kT

and 0(t,T) is found as follows:

1. When F is time varying, D is computed from

d[_(t,T)] = F(t) q(t,T)
dt

2. When F is constant $(t,T) = 0(t-T) is computed by

0(t-T) = eF(t-T) = o [F(t-to)] 
k=o k!

The relationship between continuous and discrete systems is shown in

Fig. 16.

In addition, the integral to be minimized is replaced by the

summation
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m-1
V(mT) = T X L[u(kT), x(kT), kT] (1-53)

k=o

The minimization of V(mT) for discrete systems will be considered

for two cases: a) the optimal control law, and b) state estimation.

Optimal Control Law [22]. Consider the continuous system equations

to be of the form,

x(t) = F(t) x(t) + G(t)u(t)

y(t) = H(t)x(t) (1-54)

mT
V(mT) = xT(mT)Ax(mT) + f xT(t)B x(t) dt

mT
+ f uT(t) C(t)u(t) dt

o

where A = terminal state weighting matrix

B(t) = state weighting matrix

C(t) = control cost matrix.

The optimal controller is obtained by solving the nonhomogenous matrix

Riccati equation

dS = SF -FTS + SGC-1(O)CTS - B(O). (1-55)
dt

If F and G are constant,

S(mT) = [02 1(mT) + 02 2 (mT)A][Oll(mT) + 01 2 (mT)A]- 1 (1-56)
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Where

e TA [A %1 121

021 22 

and

-F GC-1GT

B (0) FT

Once S(mT) is known, the optimal control vector can be obtained from

Uopt(t) = D(mT - t)x(t) (1-57)

where

D(mT - t) = C-l(t)GTS(mT - t) 

In block diagram form, the optimum controller can be depicted as in

Fig. 17. Notice that to find uopt the state vector x(t) is necessary

for calculation of the optimal input. In most systems x(t) is not

available; y(t) is available instead. Hence, we "estimate" x(t) using

y(t) as shown in Fig. 17.
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State Estimation [23]. It is desired to find an optimal estimate

x for the state variables x for a system defined in Fig. 17. The

system output y is measured every T seconds; call the measurement

z(nT) = y(nT) + v(nT)

= H(nT) x(nT) + v(nT).

simplifying the notation

-n = Hrr-n +-n

where v
n

is measurement noise and

E[ T] = R
-n-m Rn 6 m

E[v i = 0.-n

The estimation scheme is to predict the present value of the state

vector by using the last predicted value and updating it with the

present measurement.

x (+) = () + Kn [
n
- H

n
x n(

-
)]

(1-58)

(1-59)

(1-60)

where xn(+) and xn(-) are estimates of the state vector xn after
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and before the measurement ,n' at time nT. The Kn is the optimum

weighting matrix. Let the error in the estimate be

xn (+) =

xn(-) =

_Xn(+) - Xn

(1-61)

Substituting (1-58) and (1-61) into (1-60)

xn(+) = (I - KnHn)Xn(-) + KnVn (1-62)

Define

(1-63)

However,

E[Xn(-)vT] = E[v x(-)] = 0-n -n -n-n

because of uncorrelated measurement errors. Thus, (1-63) becomes

Pn(+) = (I - KnHn)Pn(-)(I - KnHn)T + KnRKT K~H~ I1K (1-64)

The cost function to be minimized in state estimation is the sum of

the diagonal elements of the error covariance matrix Pn(+):

xn() - x-n

Pn(+) E[xn(+) xn(+)]



m-1
V(mT) =- 

n-o

The V(mT) is minimized by Kn .
The solution is

T = +T -1- pn(+)HTRnK = P (H P(-)H +P (+)HTRl
n n inLTIHnn n n

Substituting K into Pn(+) results in
nI

Pn(+) Pn(-)Hn[HnPn(-)Hn + Rn] -1 HnPn(-).

The equation set for the state transitions of the discrete system

Xn+ = n-xn + ~n'

Again, using (1-67) and (1-61) in (1-63)

Pn+l(-) = nPq+) + Qn'

where

w
-n

= r[kT + T, kT]u(kT)

E [wwT] = Q n6
!n! m n mn

2-56

E [Xn (+) Xn (+)I }

(1-65)

(1-66)

(1-67)

(1-68)
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E[n] = O

The results given above are now summarized in Fig. 18.

Nonlinear Filtering [24]

Reference [24] presents a class of nonlinear systems which obey a

principle of superposition. In particular, the synthesis of nonlinear

filters for signals which can be expressed as a product or convolution

of components is examined. Practical applications in speech and image

processing are illustrated.

Range Adaptive Digital Filtering [25]

In many applications the digital filter's input signal tends to

dwell near zero with occasional perturbations away from null. Range

adaptive digital filtering has automatic scaling of its input, internal,

and output signals to prevent arithmetic overflow. This is a hardware

concept and will be further examined in PART 3, Mechanization of Digital

Filters.

Random Sample Skipping [26]

In certain time-shared applications of digital filter hardware

several input/output sequences, say n, of numbers can be handled by

a single special-purpose computer which looks like n digital filters.

If the sampling rates for each filter is different, then inevitably

conflicts for the arithmetic unit will take place and certain input

samples will essentially be lost. This process can be described as
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nonlinear random sample omission. Reference [26] shows that in some

cases random sample omissions in a closed-loop system with random

inputs can be beneficial in reducing the mean-square value of a nulling

error signal.

Block-Floating-Point Filters [27]

Block-floating-point is a compromise between fixed-point and floating-

point arithmetic. In fixed point arithmetic no scaling is used for

addition or multiplication of numbers. In floating-point, automatic

scaling is performed for each product or sum calculated. In block-

floating point arithmetic, numbers are expressed as a fraction and

exponent (as in floating point); however, scaling is performed once

for an entire expression instead of for each operation.

For example,

Yn = xn + alYn-1 + + aNYn-N (1-69)

would be calculated as

Yn =_1 
^

n A Y n
n

Yn = Anxn + alAnwln + ' + aNAnWNn

(1-70)

Xn = An-lxn

Win = An_lYni
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The scaling factors An and An are powers of 2 and are determined as

follows

An = Cn
2

An = AnAn-l

where Cn is the maximum characteristic of the variables Xn, Wln,"',

wNn. In (1-70), the calculations for Yn, xn, and win involve only

scaling (shifting). Once scaling is performed in Yn' then all the

arithmetic calculations are performed in fixed-point. The block-floating-

point realization is summarized in Fig. 19.

Sample-Rate Reduction Digital Filters [28]

There exists a direct relation between input sampling frequency

and the computational rate of the digital filter hardware implementation.

In order to prevent input frequency aliasing, two common practices

are to sample at a high rate or to use an analog low-pass filter before

the A/D converter. Reference [28] suggests sampling at a high rate

and using a digital low-pass filter whose output can be sampled at

a much lower rate to furnish the input signal for some digital signal

processing system. Advantages include the elimination of phase

distortions which are inevitable in analog aliasing filters.
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nX~~~~~~~~~~~~An
xn =- Yn

na-1

An

aN ' j

a 2

AT

WNn

Fig. 19. Block-Floating-Point Filter



II. TRANSFER FUNCTION SYNTHESIS

The synthesis of transfer functions for digital filters is

surveyed in this section. The survey is subdivided into nonrecursive

filters, recursive filters, and sample designs.

Nonrecursive Filters

The synthesis of nonrecursive digital filters consists of determining

the coefficients hi of the expression

M-1 -i

H(z) = I hiz (2-1)
i=O

In the z-plane this amounts to placing zeroes anywhere in the plane

with all poles falling at the origin.

Specification of Frequency-Domain Zeroes [29]

The design of nonrecursive digital filters in the frequency domain

consists of specifying a finite trigonometric polynomial which satisfies

some criteria. Here the polynomial is defined by placing its zeroes.

The frequency charactrristic of (2-1) is defined as

M-1

H(f) = hn e-j2fn
n=0

2-62
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Replacing f by the complex variable ~ = f + ja

M-1
H(O) = K1 H [1 - e-j2 (- n) ]

n=l

where

I{n} = {fn + jan}

IfnI < 1/2

The {(n} are the zeroes of H(O) in the central period. Hence, the

scale factor K1 and the M-1 central zeroes completely specify H(f).

The function is factored into stopband and passband zeroes

H(f) = HS(f)Hp(f)

where

NS
Hs(f) = K II [1 - e-j2(f-0 n)]

n=l

Np

Hp(f) = Kp n [1 - e-j27(f- n)]

n=l

(2-2)

(2-3)

(2-4)
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Once the zeroes have been apportioned between the stopband and passband,

the passband and stopband zeroes are positioned to give a "good" shape

for H(f). The procedure is demonstrated in [29].

Frequency Sampling [30,31,32]

The technique of frequency sampling may be used to synthesize

nonrecursive filters as follows:

1. Choose a set of frequencies at which the sampled frequency

response is specified.

2. Obtain the values of the continuous frequency response of the

resulting filter as a function of the filter parameters

(defined below) using the sampling theorem.

3. Compare the interpolated frequency response with the desired

filter and search for a minimum of some filter characteristic.

4. When the minimum is found, the parameters are used to realize

the nonrecursive filter.

The frequency samples in step 1 are specified in the passband

and stopband; however, in the transition region several samples are

left adjustable and these are the parameters used in steps 2 and 3.

The references [30,31] describe computer aided design programs which

essentially automate the optimizing process.

Windowing [19,31,33]

Windowing filters, discussed in Chapter 1, are nonrecursive

filters whose finite impulse response is found by terminating an
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infinite impulse response by means of a window function. The details

of the procedure have been demonstrated earlier.

Equiripple Filters [34,35]

Equiripple nonrecursive digital filters may be designed by

minimizing the maximum error between some desired complex frequency

response F(f) and the FIR response as shown below

P/2

Ek = / hte -2fk - F(2Wfk) (2-5)
t=-(/2

where

j = /-

h
l

= filter coefficients

P = even integer

fk = normalized sampled frequency

Ifkl < 1/2

2W = sampling rate.

Equation (2-5) may be minimized using the simplex method of linear

programming. Digital filters designed in this manner are sometimes

said to have minimax responses.
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Recursive Filters

The recursive digital filter has the form

n
-i

aiz

H(z) = i=O (2-6)
1 + E biz - i

i=l

The synthesis of recursive filters is the task of choosing the

coefficients ai and bi in order to force the filter to behave in some

specified manner.

Direct Synthesis in the Frequency Domain [36]

The frequency response for (2-6) is found by substituting z = ej2IfT

n a -je2 fiT

H(f) = i=0 (2-7)
n

1 + ~ bie-j2rfiT
i=l

If N(f) is the numerator of (2-7), then

IN(f)12 = ( E aie 
-
j 2 fiT)( X aiej 2nfiT

n

=H o + 2 k Hk cos(2rkTf) (2-8)
k=l

where
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n
Ho = k

2
k=O

Hk apaq
(p-q)=k

Equation (2-8) may be further reduced to

n 2k

IN(f)12 = ak cos (nTf), (2-9)
k=0

where ak are constants. Hence equation (2-7) may be written as a

rational function in cos (rTf) [or sin(RTf)]. Any such rational

function may be specified by the roots of the two polynomials.

Consider the Butterworth lowpass filter in the analog domain

{Hl(f)12 = 
1 + (-)2p

fc

Since the term sin(nfT) corresponds to f in the discrete case

{H2 (f)1 1 (2-10)

[sin (rfT ) 2p1 + [sin(rfcT)

represents a lowpass digital filter. To find the filter coefficients

solve for the roots of the polynomial. An example design in the

continuous case is presented later in this chapter.
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Other filter types (bandpass, highpass, band stop, etc) may be

designed using this technique.

Sampled Data Transformations [37]

This section describes a mapping technique for designing recursive

digital filters. First, a suitable continuous filter G(s) is found,

and then a mapping function from the s-plane to z-plane is employed to

find the digital equivalent filter D(z). Hence, first we review

continuous filter design and then employ the sampled-data transformations.

Continuous Filter Design. The design of continuous filters can

be accomplished by first designing several low pass filter transfer

functions G(s), called prototype or normalized designs; the prototypes

have a critical or break frequency of one radian/sec. The prototype

is used to realize a filter for a given specification by using the

frequency transformations listed below:

Low Pass: s + s/Wu

s 2 + Wuul
Band Pass: s +

s (Wu-w)

s(Wu-W) (2-11)
Band Stop: s +

s2 + wuO

High Pass: s + Wu/s

where
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w = upper cutoff
u

'~ = low cutoff

Five prototype filters will be discussed in this section:

Butterworth, Bessel, Transitional, Chebyshev, and Elliptic designs.

Butterworth: The Butterworth approximation to the ideal low pass

filter is defined by the squared frequency magnitude function

IG(W)12 = 1/[l + (u2)n] (2-12)

where n is the order of the filter. The Laplace transfer function is

given by

G(s) G(-s) = 1/[1 + (-l)ns2n]

or

n 1
G(s) = n

j=l (s + bj)

where

bj = _ei7[(l/2) + (2j-1)/2n]bj= - i = --
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Bessel: The Bessel filter approximation for the linear delay function

e - T s may be written

G(s) = (2-13)
Bn(s)

where Ko is a constant term and Bn(s) are Bessel polynomials.

B0 = 1

B1 = S + 1

Bn = (2n-l) Bnl + s2Bn-2

1/n
The roots of Bn(s) are normalized using the factor (Ko )

Transitional: The transitional filter combines roots of the nth order

Butterworth and normalized Bessel filters according to a transitional

factor TF. Let

rj = magnitude of jth transitional pole

rlj = magnitude of jth Bessel pole

j = angle of jth transitional pole

8 1j = angle of jth Bessel pole

02j = angle of jth Butterworth pole.
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the poles of the transitional filter are then described by

rj = r
l
j TF

ej = 2j + TF(e1 j - e2 j ) (2-14)

Chebyshev: Chebyshev filters exhibit better cutoff characteristics

for lower order filters than do the above designs. Chebyshev type I

and type II filters are defined by

I
G(W)1 2 = 1

1 + s2T2(m)
n

and

1 G2 () =
1

(2-15)

(2-16)

1 + e2 T .Tn(r) 2

LTn (r/) J

where

= cos(n cos-lw)

- cosh (n cosh-lw)

O <0 < 1

X > 1

To = 1

T 1=
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T2 = 2w2 - 1

T3(W) = 4-3 - 3w

The order of the filter n is determined by specifying inband ripple E

and the lowest frequency at which a loss of a db is achieved. Hence,

e = (1 0 E/1 0 - 1)1/2
(2-17)

2 a/10A = 1 0 a/

and

cosh-1/A2 - 1/
n=

cosh- l(r)

In equation (2-17), the variables E, a, or wr must be adjusted so the

n will be an integer. The type I filter differs from the type II in

that the type I exhibits equiripple in the pass band while type II

has equiripple in the stop band.

Elliptic: The Elliptic filter has equiripple in both the pass and

stop bands. Hence, this type design usually achieves the desired

frequency response with a lower order n than any of the above types.

The elliptic filter is determined by
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IG(w)12 = 1
1 + E2+2(w)

K(k n )

n, = K(k)K

sn[K(kl)+ K(k
)

sn-l(;k);kK(k)

dw

(2-18)

n odd

n even

= Elliptic integral of the
first kind

sn[x;k] = w = Jacobian Elliptic function

K(k) = complete Elliptic integral of the first kind

t/2

= 
o

d(1 -

(1 - k2sin2 )1 / 2

k = /wr

kl = e(A2 - 1)-1/2

c = (1 0 E/10 - 1)1/2

A2 - 1 0 a/ 1 0

where e, a, wr were defined for the Chebyshev filter, the order n

is found by

where

with

x = J
o

I

[(1-W2)(1-k2W2)]1 / 2
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K(kl)K(k)

K(kl)K(k')

with

k' = (1 - k2)1/2

k; = (1- k21)/2

The result of any of the five design methods results in a Laplace

transfer function G(s) for the desired frequency response.

Sampled-Data Transformations. Once the continuous transfer function

G(s) has been determined, the transformation to the discrete or z-plane

is made. Three methods of transformation will be presented: the

standard z-transform, the bilinear z-transform, and the matched

z-transform.

Standard z-transform: The problem of converting a continuous filter

to a discrete one was presented earlier. It was shown that

Eo*(s)
= G(z) = Z[G(s)]

Ei*(S)

and that



Eo(s)

Ei*(s)
Gho(s) Z[G(s)]

But for small T

Gho (S) Z T

Hence,

Eo(s)
0 = TZ[G(s)]

Ei*(s)

Define the digital filter D(z) equivalent to G(s) to be

D(z) = TZ [G(s)],

where Z[G(s)] is the standard z-transform of G(s). Hence,

n
D(z) = T

k=l

Rk

1 - e-Tbk -1

Note that the standard z-transform can be used only on bandlimited

signals (f < fs/2).

2-75

(2-19)
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Bilinear z-transform: The bilinear z-transform may be used to obtain

a discrete equivalent of G(s) as follows:

D(z) = G'(s)

s = (2/T)(1 - z-1 )(1 + z-l)-
1 (2-20)

Where G (s) is a continuous filter whose critical frequencies differ

from G(s) by

f' = 1/7T tan (7fcT). (2-21)

Relation (2-21) is used before the continuous filter G(s) is designed.

The new filter G (s) is designed instead and then transformed to the

z-plane by (2-20). The bilinear z-transform is a bandlimiting trans-

formation with relatively flat magnitude characteristics in the pass

and stop bands. However, the time response will be considerably

different.

Matched z-transform: The matched z-transform matches the poles and

zeroes of the discrete function to those of the continuous one. The

digital equivalent of the G(s) function is calculated as follows:

D(z) = G(s)

s + ai = 1 - z-le-aiT

s + bj = 1 - z-lebjT
(2-22)
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If G(s) has no zeroes, it is sometimes necessary to multiply (2-22) by

(1 + z-1)N , N is an integer.

Summary: The standard z-transform is suitable for only bandlimited

functions, while the bilinear and matched z-transforms are suitable

for all filter types. The matched z-transform requires G(s) in

factored form; standard, in partial fraction form; and bilinear,

in prewarped frequency form. The standard z-transform preserves the

shape of the impulse-time response; the matched, the shape of the

frequency response; and bilinear, the flat magnitude gain-frequency

response characteristics. An example filter is designed and discretized

in the following example.

Design Example. In this section a digital filter will be designed

using the techniques summarized above.

Suppose it is desired to design a bandstop filter Gl(s) with

wu = 200 = 2X(31.831)

-t = 170 = 2=(27.056).

Multiplied times this filter will be a low pass filter G2(s) with

mn = 600 = 2r(95.493), with a d. c. gain of 1.356. The band stop filter

will be designed from Butterworth, Bessel, and Chebyshev I prototypes

with n = 2. The low pass filter will be designed with n = 1. The

prototype of G2(s) = 1
s+l
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The prototype filters for Gl(s) are found below.

Butterworth: The Butterworth filter is defined by

il<(w,)12 = 1
1 + 

Gl(s)G1 (-s) = 1

1 + 4

G
1

(s) =
C1( ) (s - ei3wt/4 )(s - ei5W /4)

Gl(s) = 1

s + /2 s + 1

Bessel: The Bessel prototype is defined by

K0 3
G(s) =

B2(s) s2 + 3s + 3

Chebyshev I: The Chebyshev I filter is defined by

IG,(w)12 = 1
1 + 62 T2 (W)

2

T2 (w) = 2X2 - 1

c = (1 0 E / 1 0 - 1)1/2
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2 a/10
A . 10

cosh -1 (/A )
n =A -1/c

cosh (wr)
r

= 2

Let E = 1.33 db, then

E = (10 133 - 1)1/2 .5

Let the filter gain be down 6 db at w
r

a= 6

2 6
A = 10. = 4.

cosh-l(A2 1/ )
A h- l/E

n =

cosh (w )
r

=2

cosh-l ( r)
r

= 1 cosh- 1 (i ) = .44

w = 1.098
r
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Hence,

1
4 2

( -w + 1.25

1

(s + 1.057 /31.750)(s + 1.057 /-31.75°

1

2
s + 1.308s + 1.118

The analog filters are designed from the prototypes by setting

G(s) = G1 (S) X G2 (s)

s (u - "w)

2s +ww

and adjusting the d.c. gain to be 1.356. The resulting filter equations

are given by

IG1 (W) 12

G1 (s) =

G1 (s) =

S = S/W ,
n

i
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Butterworth:

s4+68000s2+1.156X109

(s4+1272.8s3 +68900s2+4.3275XlO7s+l.156X109 )(s+600)

Bessel:

G(s) = 2440.8
s4 +68000s2+1.156X109

(3s4 +27000s3 +2.049X105s2+9.18X107s+3.465X109)(s+600)

Chebyshev I:

G(s) = 909.6
s4 +68000s2 +1.56X109

(1.118s4+1177.2s3+76924s2 +4.0025X107 s+1.2924X109 )(s+600)

The filter equations above were plotted for db and phase, % , versus

frequency as shown in graphs 1, 2, and 3. Since the plots are nearly

identical, the Butterworth G(s) was chosen to be discretized by the

standard, bilinear, and matched z-transforms, with T = .001.

The Butterworth design for G(s) may be written in partial fraction

expantion

G(s) = 40.567 +
s + 27.314

2.4402X10- 4 + j7.5033X10- 5

x + .35375 + j185.39

+ 2.5502X10 - 4 - j7.5033X10-5

x + .35375 - j185.39
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1642.1 -869.03

S + 1244.8 8 + 600

The standard z-transform is taken

a + aT
s + u 1 - e-Ulz

'

and

a + ib + a - ib + T [2a] + [2e -T(bsinvT - acosvT)]z-1

s + u + iv s + u - iv 1 + [-2e-uTcosvT]z
-
1 + [e-2 uT]z-2

Hence,

D(z) =4.0567X10-2 4.8803X10- 7 - 4.420xX10-7z-1D(z) - +
1 - .97306z 1 - 1.9654z

-
1 + .99929z

2

1.6421 + -.86903

1 - .28800z - 1 1 - .54881z- 1

The frequency response of this function is found by letting z = ej)T,

The plot is shown in graph 4. Note that this response is entirely

inadequate. The standard z-transform is accurate only when G(s)

is limited to frequencies less than 1/2T, or in this case, 500 Hz.

This condition is violated as is seen in the plot of the continuous

Butterworth design G(s).
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The bilinear z-transform requires a prewarped frequency scale for

the Butterworth G(s) design, so

Us = 2 tan ( z T).T 2

Wu

On

unwarped

200

170

600

warped

200.67

170.41

618.67

The Butterworth design to be used in this case is

G(s) = 1

s2 + /i s + 1

X 1
s + 1

s(200.67 - 170.41)
S= + 2006717041

s2 + (200.67)(170.41)
s = s/618.67

G(s) = 838.92

G(s) = 838.92

s4 +68392s2 +1.1694X109

s4 +1294.8s3+6930 8s2 +4.4279X107s+1.1694X10 9 )(s+618.67)

(s2+3.4199X104)2

(s+26.987)((s2+.70708s+34199)(s+1267.1)(s+618.67)
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The bilinear z-transform is found by letting

D(z) = G(

D(z) = .19509

T 1 + z-1

(1-1.9661z-l+z- 2 )2(l+z-l)

(1-.97337z- 1 )(1-k9654z-+.99930z- 2)(1-.22433z- 1 ) (1-.52749z-1 )

The frequency response for this function is found with z = ejwT and is

plotted in graph 5. Note that this plot closely matches graph 1.

The Butterworth G(s) may be factored as follows:

G(s) = 813.6 (s-j184.39) (s+jl84.39)(s-j84.39) (s+j84.39)
(s+27.314)(s+.35375+jl84.39)(s+.35375-j184.39)(s+1244.8)(s+600).

The matched z-transform is given by

D(z) = G(s)

-aT -1
s+a1l-e z

(s + u + iv)(s + u = iv) = 1 - 2e-uTcosvTz
- 1 + e 2 uTz -2

(s)
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and D(1) is set equal to 1.356, the d.c. gain. Hence,

(1-1.9661z-l+z-2)2

D(z) = .34607 (1-.97036z-1)(1-1.9654z-1+.99929z-2)(1-.28800z-1 )(l-.5488lz- 1 )

The frequency response of this function is plotted in graph 6. Note

that the matched z-transform (like the bilinear) gives a good approxi-

mation to the response of graph 1.

Digital Compensators [38]

Digital filters are often employed as compensators for discrete

control systems. Two common techniques for designing these compensators

are root locus and Bode plots.

Root locus. A typical discrete-time closed-loop control system

is demonstrated in Fig. 20a. Let

n
aiz-i

D(z) = K i=0 (2-23)

X biz- i

i=0

where K is a variable constant and ao = bo = 1. The root locus

technique is outlined below

1. Find the characteristic equation

1 + D(z)Z[Gho(s)G(s)H(s)]
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R(s) D() _ C(s)

H(s)

(a) Closed-loop Control System

EL
increasing K

d,----

1

(b) Typical Root Locus

Fig. 20. Root Locus
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2. Place the poles and zeroes of D(z) inside the unit circle

in order to make the roots-of the characteristic equation

stable for some range of K.

3. Vary K from 0 to - and solve for the closed-loop roots of

the characteristic equation.

4. Choose an appropriate value for K.

In practice steps 2 and 3 are repeated on a trial and error basis. Once

the procedure is complete, D(z) in (2-23) is completely specified.

Bode plots. Bode plots are amplitude and phase plots for a

transfer function constructed using the asymptotic behavior of simple

first and second order factors in the numerator and denominator of

the function D(s). The plots are

db = 20 logID(j2rrf)I

% = /D(j2nf)

Once the proper frequency response has been found, D(s) may be mapped

to the z-domain using the bilinear z-transform.

Frequency Sampling [3]

Earlier in this report the technique of implementing a finite

duration impulse response filter in a recursive manner was presented.

The-coefficients must be integer powers of the first one for this

technique to be applicable.
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Nonlinear Programming [34]

Nonlinear programming can be used to design both recursive and

nonrecursive digital filters. The filter is written as

s 1 + ai z- 1 + biz
-
2

H(z) = g I 1 iz + 
i= 1 + ciz-1 + diz-2

S
H(z) = g + E

i=l

(2-24)

(2-25)
ai + biz

-
1

1 + ciz-1 + di z - 2

An error function is formed

Ek = IH(ej2 nfk) 2 - IF(2Wfk)I 2 k = 1,N (2-26)

where fk are the discrete frequencies, 2W is the sampling rate, and F

is the desired continuous frequency response. Note that Ek is every

where a differentiable function of ai, bi, ci, di, and g. The errors

Ek must satisfy

-Lk < Ek < Uk k = 1,N. (2-27)

From (2-27) we may define

or
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=k QUk - Ek
(2-28)

Hk = QLk + Ek k = 1,N

where Q > 0.

A penalty function such as

N N

Q + r + _ r (2-29)
k=l Gk k=l Gk

is formed. A suitable computer program (such as the Fletcher-Powell

algorithm [39]) is used to minimize the penalty function with respect

to Q, g, ai, bi, ci, and di. Then the factor r is divided by a factor

and the process is repeated until Q becomes nearly constant. If Q is

less than unity the procedure stops; otherwise, increase the number

of stages s of the filter and repeat the above procedure until a Q

is found less than unity.

Optimal Digital Equivalent [40]

In this section the problem of determining an optimal digital

equivalent D(z) for a continuous filter G(s) is considered (see Fig. 21).

The coefficients of D(z) are determined by fitting the input and outputs

of the two filters. Let

e d(J) = eo(j), (2-30)
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Eo (s)
-T * eo(t)

T

I. eod (t)

Fig. 21. The Equivalent Filters

Ei (s)
1 31G(s)

D(z)Ei(s) E (s)t
T
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and

-l -n+lE (z) a + alz-1 +,"+a zn -
D(z) = od = o 1 n-

Ei(z) 1 + blZ- 1 +'. +bnz-n
(2-31)

The problem then becomes one of choosing at and bl in D(z) such that

(2-30) is satisfied. A difference equation for (2-31) is

n-1

eo d (J) I atei (jlet) -
Z=o

n

beeod(J-,)·
le=l

(2-32)

Substituting (2-30) into (2-32)

n-l n
e(j) = I ape

l
(j-t) - [eo(J) + C bte

o
(j-Z)]

Z=o 1
(2-33)

where e(j) is driven to zero by minimizing e2 (j), the mean squared

error.

In vector form (2-33) becomes e(j) = .T(j)c - eo(j) where,

cT = [ao0,.,an l,-bl,"'',-bn]

(2-34)

qT(j) = [e ,(j),ej(j-n+l),eo(j-1),( j )... ,e(j-n)].

The mean square error is

_ N
e2 = lim 1/(2N+l) I e2 (j)

N-)- j=-N
(2-35)
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Equation (2-35) is minimized by

= 2 lim
Nac N+--a

(lim 1/2N+1
N-x

I

N
1/(2N+1) I

J=-N

N

j=-N

R

S(j)e(j) = 0

q(j)q'(j))c = lim
N-o

I

N

1/2N+1 E. q(j)eo ()
j=-N

r

and

c = Rir2

or

II

(2-36)
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Equation (2-37) and (2-38) may be written

AB

R = [ ]
CD

rT = [E Fl]. (2-39)

The elements of (2-39) are of the form

A: 4eiei(kT)
B: $eieo(kT)
C: $eoei(kT)
D: $eo e o(kT)
E: Oeie

o
(kT)

F: Oeoeo(kT)

where

N

xy(kT) = lim 1/(2N+l) E
N+> J=-N

(2-40)

x(j)y(j-k);

the Oxy is the correlation function for discrete sequences. Since the

input signal power spectrum $eiei(s)and the analog filter G(s) are

known, (2-40) is determined by

4eiei(kT) = Oeiei(T)IT = kT
-
1
[$eiei(s)] kT

T = kT

Oeie
o
(kT) = -l [eiei(s)G(s)] = kT

IT = kT
= Deoei(kT),

and

(2-41)
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eoe o(kT) = - [4eiei(s)G(s)G(-s)] = kT
|T = kT.

The digital filter determined above should have higher order than

its analog counterpart so that the mean squared error will be small.

Sample Designs

In this section some example digital filters are listed.

Bandstop Filter

A digital bandstop filter was designed earlier in this chapter:

.34607(1-1.9661z-l+z 2 )2
D(z) =

(1-.97036z-1)(1-1.9654z +.99929z-2)(1-.2880z )(l-.54881z )- 1

(2-42)

The frequency response for T = 0.001 is shown in graph 6.

Digital Resonators

A digital oscillator is formed by placing complex poles on the

unit circle:

D(z) (2-43)
1 - 2 cos(2 fT)z- 1 + z-2

where T is the sampling period and f is the frequency of oscillation.

Experimental results are available in [41].
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Digital Differentiators [42]

The differentiator is a necessary part of many practical systems.

The digital differentiator may take many forms; perhaps the best is

a forth order recursive design shown below:

(2-44)D(z) = A (1 - az
-
1 )(l - bz-

1 )(l - cz
-
1 )(l - dz

-

1 )

(1 - ez
-
1 )(l - fz-1 )(l - gz-l)(l - hz- 1 )

where

A = 0.36804011
a = 0.99999949
b = -0.86810806
c = 0.32672838
d = -.44183252

e = -.10779165
f = -.87602073
g = 0.33494085
h = 0.51312758

This differentiator was designed using nonlinear programming.

A nonrecursive wideband differentiator can be constructed for N

samples by the relation

Gk = k/(N/2)

= (N-k)/(N/2)

k = 0, N/2

k = N/2 + 1, N - 1.

If the center samples are adjusted to optimally minimize the magnitude

error for N = 16, then

(2-45)
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GN/
2
= 0.92890015

G = 0.86994255 (2-46)(NI2)-i

G(N/2)_
2
= 0.75000000

yields a peak error magnitude of 7 x 10- 5 for an 80% bandwidth.

Low-Pass Filters [43-45]

Reference [43] presents some 9 example nonrecursive low-pass filters

of order 11. The designs are found using prolate spheroidal functions,

least mean-square error, Fourier coefficients, windowing, binary

weighting, and minimax techniques. The reader is referred to Table 1

of [43] for the appropriate coefficients.



III. COEFFICIENT QUANTIZATION

General [46]

One effect of finite wordlengths in digital computers is that the

filter's parameters, or coefficients, must be chosen from a finite set

of allowable values. Classical design procedures yield filter transfer

functions with coefficients of arbitrary precision which must be altered

for implementation using digital computing devices. One approach to

this problem is to select a filter structure (programming form for

the difference.equations) which is not sensitive to coefficient

inaccuracies. For example, realizing a filter directly allows a

greater chance for instability than cascading or paralleling second

order modules because it is well known that the roots of polynomials

become more sensitive to parameter changes as the order of the polynomial

increases.

Any programming form, or structure, produces a grid of allowable

pole/zero locations in the z-plane. The proper structure to choose is

one for which the grid is most dense in the areas at which the poles/

zeroes must be placed for a particular design. It is obvious that

arbitarily rounding or truncating denominator coefficients could cause

poles to migrate outside the unit circle causing filter instability.

Instability Thresholds 147]

For low-pass filters, a measure of the number mb of bits required

to represent the coefficients of a stable filter may be expressed as

2-104
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mb = i - N log2 (2ir BT) (3-1)

where

B = minimum attainable bandwidth

2i-1 < N/2] < 2

for the direct programming form. For the cascade form

2 - (mb - 2)/2
B 2 2 . (3-2)

These stability thresholds are valid for filters designed using direct

synthesis in the frequency domain for sine and tangent Butterworth low-

pass filters. The results may be extended to other filter types.

Reduced Coefficient Wordlengths [48]

The cost of implementing a digital filter via a special-purpose

computer is directly related to the wordlength of its coefficients.

However, a short wordlength can cause large deviations in pole/zero

placement. Hence a compromise must be found. The following procedure

represents one solution to the problem.

Let the transfer function of the digital filter be

m
X bi -i

iO=0

H(z) m (3-3)
m -i

i ciz
i=O
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where c = 1. If we examine the desired frequency response H around

the unit circle

IH (ejWT)I = 1 in passband
(3-4)

= 0 in stopband

and is unspecified in the transition regions. If the maximum passband

and stopband deviations are defined as 6p and 6

IH,(e JT) )I H(eWT)I < 6(e j T )

or

1jJWT
E(e j T

) = 1 - IH (ej )I I in PB

1 jwT (3-5)
6s I IHn(e )I in SB

where E is the normalized error function and H (z) = K H(z), a normalized

transfer function.

The design of H(z) minimizes max E such that

max E < 1 (3-6)

using standard minimax procedures. If (3-6) holds for a set of parameters

a, then justification for searching for a second set a' of reduced word-

length which also satisfies (3-6), where
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T
a = [bo, lb , bm' co, m]

The coefficients are usually found for the cascade or parallel form.

The search for a new set a' follows a modified univariate procedure

which is described below:

1. Several sets of parameters, say 10, are stored in order of
minimum max E.

2. Perform a univariate search on the best set a
1
. If no improvement

can be found, try a2.

3. Stop the procedure when no better improvement is found for
any stored coefficient ai.

Generally, rounding of the coefficients is first performed. A

univariate search reduces max E by 25 to 50% over rounding, while a

modified univariate search produces the best results reducing max E

by 25 to 50% over the univariate search.

In general, the development of synthesis procedures for quantized

digital filter coefficients remains an active area of research.



IV. NONLINEARITIES IN FIXED POINT ARITHMETIC

In digital computer implementations for digital filters, the

restriction of finite wordlength produces several nonlinear phenomenon.

Quantization occurs at the input sampler and in the internal arithmetic.

Saturation and overflow also manifest themselves. Inaccuracies in

coefficient representation has been discussed previously. Other noteable

effects which must be examined are limit cycles and deadbands.

Quantization Errors

A digital filter specified by equation (3-3) is implemented by pro-

gramming constant coefficient linear difference equations. The program

for the difference equations will consist of the arithmetic operations,

multiplication and addition (subtraction), and data transfer operations.

The arithmetic unit of the computing device must be furnished binary

numbers for the coefficients and variables of the difference equations.

Since each coefficient and variable is represented by a finite number of

binary digits, the binary numbers supplied to the arithmetic unit are

quantized versions of the real numbers expected in the difference equation.

Hence the digital filter introduces quantization errors into the system

of which it is a part.

Quantizer Types [49]

Signal amplitude quantization results from A/D conversion of the

digital filter input signal, and from arithmetic operations with in the

computing device itself. Three common types of arithmetic quantizers

are shown in Fig. 22; the step-length of each quantizer is h. Fig 22a

illustrates the quantizing characteristic for a roundoff quantizer. The

roundoff quantizer approximates the input signal ei by the closest quan-

tized value eiq as follows:
2-108
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eiq

h

ei h ei

(B) TRUNCATION

eiq

3h

2h

h

h 2h 3h ei

Fig. 22. Three Common Arithmetic
Quantizers.

(C) LSB-1
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_ h < ei < 2 for e i > 02 e iq 2 i
(4-1)

h < ei eiq '2 for ei < 0.

Therefore, the maximum error magnitude is h . The properties of the

truncation quantizer is shown in Fig. 22b. This quantizer is less diffi-

cult to implement than the roundoff type; however, the approximation eiq

is less accurate:

0 < ei - eiq < h for ei > 0
(4-2)

-h < ei - eiq < for e i < .

Here the maximum error magnitude is h.

The third arithmetic quantizer presented in Fig. 22c is labeled LSB-1.

In LSB-1 the least significant bit of quantized binary words is always

set to "one." For this quantizer eiq is never equal zero.

-h < ei - eiq < h for ei > 0
(4-3)

-h < ei - eiq '<h for ei < 0.

Again the maximum error magnitude is h.

Signal amplitude quantization at the A/D converter usually takes two

forms. If the A/D converts the input signal magnitude to binary form,

then the quantizer characteristic of Fig. 22b for truncation adquately
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describes the effect of the A/D. However, if a bipolar A/D is used, the

bipolar property is usually obtained by an offset bias voltage which

causes the bipolar A/D quantization characteristic shown in Fig. 23. For

this quantizer

O < ei - eiq < h (4-4)

and the maximum error is h.

In summary, the maximum error magnitude introduced by a quantizer

at a sampling instant is

Roundoff: hi = h/2

(4-5)
Others: h! = h

The quantizers of Figs. 22 and 23 may be represented in a system as

an additional input error signal; this process is shown in Fig. 24. Using

this model for the quantizers, their effect on system response will now

be considered. Mathematical analysis of quantizing errors may generally

be described as steady-state analysis, statistical analysis, and error

bound analysis. Each of these analysis techniques will now be presented.

Steady-State Analysis [50]

The steady-state analysis may be divided into three steps. First,

find the z-plane transfer functions Tj(z) from the jth quantizing error
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n-1
(2 -1)h

SATURATION

Lq · SATURATION

I- - -

t

h

2n-1h

N = WORDLENGTH OF A/D

Fig. 23. Bipolar A/D.
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eiq(kT)

(A) THE J QUANTIZER

th
j QUANTIZER

r - -- -

I I
I nj(kT) I

ei(kT) MATHe I

l I
_ _ J

(B) MATHEMATICAL REPRESENTATION

(kT)

Fig. 24. Mathematical Model for a Quantizer.

ei(kT)
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source Nj to the system output, eo. The total number of quantizers in

the system is s. Hence,

S

Eon(z)= I Tj(z)Nj (z), (4-6)
j=l

where Eon (z) represents the output due to quantization errors.

Second, assume each error source is a step input of the maximum

error amplitude h' for the type quantizer being analyzed. Therefore,

h'
Nj(z) = 3 (4-7)

1 - z- 1

Substituting (4-7) into (4-6)

s Tj(z) h'
Eon(z) = I (4-8)

j=l 1 - Z- 1

Lastly, apply the z-transform final value theorem [y(-) = lim(l - z-1 )
z+l

Y(z)] to (4-8); thus,

S

eon(O) = lim I Tj(z)h'
z-l j=l

l=im Tj(z) hji.

If one defines

Kss
j

lim T (z)9)
sj z+l
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then

s
eon (co) = I K5ss h' (4-10)

j=l

Equation (4-10) may be used to evaluate the effect of each quantizer on the

system output under steady-state conditions.

Another technique for finding the Kss
j
weighting constants for (4-10)

is derived as follows. The standard z-transform for tj(t) is

co

Tj(z) = t (kT)z
-
k (4-11)

k=0

where kT represents a sample instant. Hence (4-9) becomes

Kss j = I tj(kT)
k=O

If tj(kT) tends to zero as kT gets large, say NT,

N

Kssj - tj(kT) (4-12)
k=0

may be used in (4-10) to calculate the steady-state error. The terms

tj(kT) in (4-12) may be obtained from a simulation of the system by apply-

ing Njdz) w 1, a discrete impulse function. Note that the weighting con-

stants are functions of the system characteristics and not of the quan-

tizers.



2-116

Statistical Analysis [51]

If the input signal to a roundoff quantizer Qj has a dynamic range

of more than three step intervals hi, the effect of the quantizer may be

determined by replacing it with a unity gain and an additive white noise

nj(kT) (see Fig. 24) with a rectangular amplitude distribution density

function p(nj) of bounds +hj/2 and height 1/hj. The LSB-1 quantizer can

also be replaced in this manner with p(nj) bounded by +hj and 1/2hj. The

truncation quantizer cannot be represented exactly in this manner, but

this technique does give a good approximation with p(nj) bounded by

+hj and 1/2hj. Let us continue by analyzing the roundoff case which

can be easily extended to the others.

The variance anj2 of this rectangular distribution is

an; = | njp(ni)dn. = < (4-13)
-00 ~ - ~ 12

When the dynamic range of the input signal is greater than three

quantization levels, the noise input of the quantizer is essentially un-

correlated between successive sampling intervals, and the autocorrelation

of the quantization noise becomes

co

njnj() = On (T - ITI)/T I T < T
n-- J (4-14)

ITI > T= O



2-117

The sampled power density spectrum is defined by

njn (z) = I n n (nT)z-n 
=
an

2

(4-15)
n=-- nj 12 (4-15)

The mean-squared error output due to one quantizer error is

eon2 (kT) = 1/2ri f n n (z TjzT(z)T( )dz/z (4-16)

r

where T(z) = Eon(z)/N(z), r is the unit circle, and i = I4. Substi-

tuting (4-15) into (4-16) and assuming that the total rms output error is

bounded by the sum of the s rms errors due to the quantizer inputs yields

s

[eon]rms < 1 Kstj hi (4-17)
j=l

where

Kstj = 24i J Tj(z)Tj(1/z)dz/z] (4-18)
r

The integral in (4-18) may be evaluated by calculating the residues of the

integrand.

Another technique for calculating the mean-square output error is by

using the following identity:

12i F(z)F(l/z)dz/z = I f(kT)2
2lf i f' k=O

Hence (4-18) becomes

Kst
j

= k tj(kT)2 
k=0
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where tj(kT) is found from the impulse response in a simulation of the

system. If tj(kT) converges to zero for k large, say N, then

Kt
j

N k2] 1/2
Kstj [12 kO ij i (4-19)

This relation may be used instead of (4-18) for many applications.

Equations (4-18) and (4-19) are for roundoff only. They should be

altered by substituting hj = 2h' into (4-17) for the general case.

Quantization Error Bounds [521

Consider an nth order system described by

x(k + 1) = Ax(k) + Dr(k)

(4-20)

e
o
(k) = cTx(k) + dTr(k)

where r(k) is a vector of the system inputs and eo(k) is the output.

The sampling interval T has been eliminated for convenience. The

introduction of quantizers into the system results in

xq(k + 1) = Axq(k) + Dr(k) - BI(k)

(4-21)

e ( k ) = cTxq ( k ) + dTr(k) - fT (k)

where q(k) represents a vector of the s quantizer error inputs nj(k). A

state variable representation for the quantization error
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v(k) = x(k) - x2q(k)

eon(k) e
o
(k) - eo(k)

results from subtracting (4-21) from (4-20)

v(k + 1) = Av(k) + Bq(k)

eon(k) = cTv(k) + fTq(k).

The general solution for (4-23) is.

N-l
v(N) = ANv(O) + I

JZ=o
A9B&(N - 1 - )

eon(N) = cTAN_(O) +
N-1

c STA B (N
Q=O

- 1 - Q) + fTq(N).

For N large,

s N-1 \
v(N) = I I A jb)qj(N - 1 - Q)

J=1 Q=o/

(4-25)

j= =N-1o T
-1- Q) +

where qj(N) is the jth quantizer and j is the jth column of the nxs

matrix B. Since, if a - bc + de, laL<lblxcl+ldlxlIel

(4-22)

(4-23)

(4-24)

f, (N).
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s N-1

l5(N)I - J-,1 m-o IA
b

j I)qj(N - 1 -)

and

s N-1
Iv(N)Imax <- j1(o A I) h (4-26)

where hi = ]qj(n - 1 - )Imax is given in (4-5). Similarly,

s( N- S (4-27)

leon max _- j l( Ic. .A )hjI h + Ifjlh. (4-27)
max J=l 9.=0 j=l

In another form,

s

lv(N) Imax - j ml h
j=1

(4-28)
s

leon(N)lImax <_ I bjhj
J=l

where

N-1

mj 2 IAN l I , j ,

Kbj =11 , (cTAj )+ IA jl (4-29)

Note that (4-29) gives weighting vectors mj and weighting constants Kub
j

which are functions of the system and not of the quantizers. Hence, (4-28)
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and (4-29) are useful in helping to choose quantization error schemes for

systems with digital filters.

A second method for bounding the output error due to quantizer Q

is from the transfer function

E on(z)
Tj(z) = on

Nj(z)

The impulse response is found with Nj(z) = hj. Therefore,

Eon(z) T (z)h; - 112 t(k)z ]h 
0,· i lj- Or·I,"J (4-30)

To calculate the worst case output error eon due to quantizer Qj

Ieon(N)Imax < It (k)I] h (4-31)

Similar to the argument employed for equations (4-12) and (4-19)

s

Ieon(N)Imax ! i Kubjhj

where

N

Kubj :O I tj(k) , j = 1, s. (4-32)

Equation (4-32) may be used to calculate the weighting constants Kubj

instead of (4-29).
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A summary of the results of the quantization analysis presented in

this section is displayed in Table 1.

TABLE 1: Quantization Analysis

Figure of Merit = E Constantj h'

Analysis Figure of Constantj
Method Merit

Steady Steady Kss limi Tj(z)
State State Error z + 1

N
Kss j : tj(kT)

k=O

Statistical Root mean Kstj =l f Tj(z)Tj(l/z) 
square error i z

N
Ksbt

j
I tj(kT)2

[3 k=O0]

N-1
Error Maximum Kub

j
= Z ICTA I fiI

Bound error N=
N

Kub j =Z [ltj(kT)[k=-O

Open-Loop vs. Closed-Loop [53]

The quantization analysis procedures above are equally applicable

to open-loop or closed-loop systems. However, open-loop analysis of the

digital filter itself is perhaps the easier approach. It has been

shown in [49,53] that open-loop analysis can give satisfactory results

even if the filter is to reside in a closed-loop system.
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Limit Cycles and Deadband Effects [46,54,55]

Consider the digital filter

Yn = xn + B Yn-1 ='0.5

implemented in fixed-point arithmetic with roundoff quantization.

the input xn is a impulse function of value 7/8

Yo = 7/8

Yl = 1/2

Y2 = 1/4

Y3 = 1/8

Yn = 1/8

(4-33)

If

(4-34)

n> 4

is the resulting output sequence. Ideally the output should go to

zero. This type error is called a limit cycle, and the amplitude

intervals within limit cycles are called deadbands. The deadband for

(4-33) is

1 2-b
tYn-ll - lYn-ll < ( 2 )

where b is the number of magnitude bits. Hence

1)2- b

( 1 ) 2-[Yn-l I < -
i- 161

(4-35)
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For the second-order filter

n = n - lYn-- 2Yn2 (4-36)

the deadband is

-b-1
IYn.2 < 2 (4-37)

1 - 1821

The deadband for higher order filters is directly dependent upon

the programming form. In general, the parallel form yields better

results because one need not be concerned with the ordering of cascaded

sections [54].

Saturation and Overflow [56]

When a filter is implemented in one's or two's complement arithmetic

and signal values exceed the finite register length upper limit, a

overflow condition occurs and the results usually changes sign. This

condition can cause large limit cycles, called overflow oscillations,

to be excited. These oscillations may be avoided by using saturation

arithmetic as designed in [57,79]. One must be wary of this solution

for in many closed-loop control systems, saturating the signals causes

system instability. Saturation changes the filter output which

effectively alters, temporarily, the transfer function.
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Dynamic Range [46]

The dynamic range of a binary signal xn of b + 1 bits is

0 < Ixn < 2b 1. (4-38)

Increasing the number of bits by one doubles the dynamic range. As

seen in the last section, it is important that the dynamic range of

a digital filter in many applications never be exceeded. Hence, several

techniques may to employed to find b.

One technique finds the least upper bound on the signal xn and

uses (4-38) to specify b and hence this limit can never be exceeded.

More practical solutions use simulation of the filter with typical

inputs to define the dynamic range of the internal variables. Some-

times statistical methods are used for non-deterministic input signals.



V. NONLINEARITIES IN FLOATING POINT ARITHMETIC

In the past there has been little emphasis placed on research and

analysis of quantization errors at the output of a floating point filter,

the reason for this being that most filter implementations use fixed

point arithmetic. Sandberg [58] was the first to study quantization

error analysis for floating point filters with [59-62] being more recent.

As in the case of fixed point filters, quantization error for floating

point filters has three sources due to finite word length. They are

1) the quantization of the input signal xn into a set of discrete

levels;

2) the representation of the coefficients of the filter, ak and

bk, by a finite number of bits;

3) the accumulation of roundoff errors caused by arithmetic

operations.

Notation

If we assume the ideal output of the filter is wn and the actual

output Yn, the error at the output of the nth sample en may be defined

as

en = Yn -'wn (5-la)

where
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M N

Wn = akxnk - bkwn-k (5-lb)
k=O k=l

Before the effects of the above error sources are discussed, the repre-

sentation of floating point numbers with a fixed number of bits should

be considered.

A floating point number is written in the form (sgn)2b'a, where b

is a binary integer called the exponent and a is a fraction between

1/2 and 1 called the mantissa, As expected, the range of numbers that

can be represented is determined by the number of bits of the exponent.

In order to represent a number v in floating point form with a t-bit

mantissa, the smallest integer exceeding log2 v is first determined.

This number is denoted by [log
2
vl. The binary expansion of the fraction

v/[log2 vl is then rounded to t bits. If (v)t denotes the t-bit mantissa

floating point approximation, it is seen that

(V)t = v(l + E) (5-2)

where the error is bounded by -2-t < E < 2 , or [-2,2).

Error Sources

Both addition and multiplication in floating point arithmetic

introduce roundoff error. Let (vl'v2)t and (v1 + v2)
t
denote,

respectively, the actual computed product and sum of two numbers v1

and v2; then
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(vl'v 2)t = (V1'V2 )(1 + 6) (5-3)

(vl + v2)t = (v1 + V2)(1 + C) (5-4)

where the errors 6 and c are bounded by [-2 -
t , 2-t).

The above errors will be regarded as random quantities and they

will be uniformly distributed in their range [-2- t, 2 -t). Making these

and the above assumptions, a statistical approach will be discussed

which predicts floating point quantization errors.

First, consider the effect of input quantization. Supposing

the quantizer has equal step size h, the input to the filter is

n + enQ where each en is bounded by -(h/2) < eA < (h/2). Since the

filter is linear, the output is the sum of the two components, xn

and e
Q
. In determining the effect of input quantization, eS is

considered as white noise with a zero mean and variance h2 /12. The

steady-state output component due to eQ is a zero-mean wide-sense-

stationary (w.s.s.) sequence with power spectral density

H(z)H(l/z)(h2/12) (5-5)

where H(z) is the transfer function of the filter as repeated below

M N
H(z) = ( E akz-k)/(l + bkz-k) (5-6)

k=O k=l
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The effect of coefficient inaccuracy on roundoff accumulation has been

ignored.

An expression for the mean-squared value of the error at the

filter's output due to input quantization is obtained by integrating

the power spectral density (Equation (5-5)). It is equal to

1/2rj fHR(z)H(l/z)(h2/12)]/z dz (5-7)

Coefficient Quantization

Considering the effect of coefficient quantization, it is seen

that each coefficient is replaced by its t-bit representation

according to (5-2). This means the coefficient ak is replaced by

(ak)t, which equals ak(l + ak), with ak bounded in absolute value

by 2 - t . Likewise, each bk is replaced by (bk)t which is bk( 1 + Sk).

Because of this, it is abvious that the filter characteristics will

change. The problem can be approached in several ways. The first,

and the simpliest, is to compute the frequency response of the actual

filter with t-bit rounded coefficients by using the actual transfer

function

M N

[H(z)]t = ( I (ak)t z-k)/(l + I (bk)tz-k (5-8)
k=O k=l

and then comparing the result with the ideal response of the original

design.



2-130

Coefficient rounding can cause movements of the poles and zeroes

of the transfer function. When this happens, network sensitivity

theory can be applied to study the changes of the filter response.

If the poles of H(z) are at z
i
, i = 1, N, and the poles of [H(z)]t

are at zi + Azi, it can be shown that

N N

(z )/ zi/n))]/Aak (5-9)
k=l m=l

mai

where Aak is the change in the coefficient ak. Likewise, results can

be obtained for the movement of the zeroes. The change in the filter

response can be studied from these movements.

Instability of a filter may occur, due to coefficient error, when

a filter has poles that are close to the unit circle in the z-plane.

The problem can be serious when the sampling rate of the filter is

relatively high, even for low order filters in the direct form.

Kaiser 162] has demonstrated that for an Nth-order low-pass filter

operating at a sampling rate of 1/T with distinct poles at e-PkT,

stability is guaranteed if the number of bits used m
b
satisfies the

inequality

N

mb > [-log2 [15f /2N + 2) ( n PkT)]] (5-10)
k=l

where the bracket denotes the samllest integer exceeding the quantity

inside. It is also possible to extend the result to include multiple

* X~C~
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poles and to derive similar results for filters of other than low-pass

type.

The effect of coefficient inaccuracy is more pronounced for a

high-order filter when it is realized in the direct form than when

it is realized in the parallel or cascade form, which suggests the

parallel or cascade form should be used for high-order filters when

possible. Further details on coefficient quantization are given in

Chapter 3.

Output Error

Roundoff accumulation error for floating point filters 159-61]

is quite different from that of fixed point filters and consequently

will be treated with more depth than that of fixed point. The errors

introduced are relative to Equations (5-2), (5-3) and (5-4). The

calculation of the statistical mean-squared error at the output will

be discussed for the direct programming form with the understanding

that extension to other forms is easily accomplished [61].

It has been shown that for floating point arithmetic the actual

filter coefficients are ak(l + ck) and bk(l + Sk) where ck and 8k are

bounded in absolute value by 2 -t. The actual computed output yn is

given by

M N

Yn = ftJ I ak(l + ak)Xn-k I bk(l + ak)Yn-k] (5-11)
k=O k=l
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where fe[ ] denotes the actual computed result by floating point

arithmetic of the quantity inside the brackets. It is assumed that

the computation of (5-11) is carried out in the following order: the

products ak(l + ak)xnk and bk(l + Bk)Ynk are first formed; the two

sums are then calculated; and finally the difference is taken to give

Yn. Each of these arithmetic operations introduces a round-off error

which is characterized by (5-3) and (5-4). A flowgraph of this operation

may be drawn, as is shown in Fig. 25, which includes all the roundoff

error introduced in the calculation of Yn. From Fig. 25, it is seen

that 6n,k is introduced when the product of ak(l + ak)xnk is formed,

and 6 n,1 is introduced when the computed products of ao(l + ao)xn and

a
l
(l + al)Xn_l are added. The actual output Yn is then

M N

Yn = ak(l + ak)en,kxn-k - X bk(l + Bk) 4 n,kyn-k (5-12)
k=O k=l

where

M
0n,o = (1 + n)( + 6n,o) i (1 + n,l)

i=l
M

On, k = (1 + n)(l + 6n,k) i (1 + n,i ) k = 1, 2,", M
i=k

N

%n,l = (1 + Cn)(1 + En,1 ) (1 + nn,i)
i=2
N

n,k 
=

(1 + Cn)(1 + Enk) H (1 + nn,i ) , k = 2, 3,---,L (5-13)
i=k
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a (l+a )xn0 o n

2( 2)
a2 (l+c

2
)x n

2

L+ n,1

14ln,3

bl(l+01)Yn_ 1

Ob 2 (1+B2 ) n-2

-ob3 (1+s 3 )Yn_ 3

I
I

1+6
)bN-(1+N)Y n-N

Yn

Fig. 25. Flowgraph of Equation (2-81).

I
I
I
I
I

I I l+en

aM (l+aM) n-M

-(1+n N)
-(1+l n,N)
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The quantities 6 n,k; Cn,k; nn,k; en,k; and En are the errors introduced

at each arithmetic step and they are independent random variables uni-

formly distributed in [-2- t, 2-t).

From Equations (5-1) and (5-12) it can be shown that the error

en satisfies the following equation:

N

Y bkek = U' + u" (5-14)
k=O

where b
o
= 1 and

M N

"n =Z akakXn-k - bk kWn-k
k=O k=l

M N

"=f ak(-n,k )xn-k - bk( n,k )Wnk (5-15)
k=O k=1

In the above equations un is due to coefficient rounding; un is due

to roundoff accumulations and the input x
n

is zero mean and w.s.s.

Both components u' and u" have zero mean and are w.s.s., and they are

uncorrelated, this being because On,k and On,k have a mean equal to 1

and are independent of xn and wn.

From Equation (5-14), the error sequence e
n

is zero mean and w.s.s.

with a power spectral density related to those of u' and u" byn n

bee(Z) = [l/(D(z)D(l/Z))][Putu,(z) + Ou,,u,,(z)]. (5-16)
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%uu,(Z) is calculated from Equation (5-15) and is given by

, '(z) = IB(z) - H(z)A(z)]' B(l/z) - H(l/z)A(l/z)]xx (Z) (5-17)

where H(z) (Equation (5-6)) is as previously defined and

N
kk

A(z) = bkkz-k
k=l

M

B(z) = C akckz- k (5-18)
k=O

Concluding from Equations (5-13), and (5-15), u" is white noise withn

power spectral density as follows;

(u ,u ,(Z) = q2 /2rj f(F(z) + G(z)H(z)H(1/z)

-N(l/z)[D(z) - 1]H(z)

-N(z)ID(l/z) - 1]H(l/z))xx(z)/Z dz (5-19)

M
where N(z)= - akz is the numerator of the transfer function in

k=O
Equation (5-6) and

M M
F(z) = I akaFk,iZ

k=O i=O
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N N

G(z) = I bkaiGi,i
-

i

k=l i=l

M + 2 - max(k,i),

Fk,i =
k'i -M + 3 - k,

N + 2 - max(k,i),

Gk,i =
N + 3 - k,

The mean squared

bee(Z) by using

k 0 i or k = i = 0

k = i 0

k # i or k = i = 1

k= i l 1

value of the error en can now be calculated from

Ee 2 I = 1/2nj f ee(Z)/z dz.

(5-20)

(5-21)



VI. PROGRAMMING FORMS

The structure of a digital filter is described by a unique set

of constant coefficient linear difference equations. These difference

equations constitute the digital filter's programming form. As a general

rule, for any programming form the lower the order n of the filter

transfer function the smaller the error introduced into the system by

coefficient and signal amplitude quantization. Consequently, a nth

order filter is usually factored into second-order modules which are

paralleled or cascaded to realize the higher orders. The second-order

is chosen so that complex poles and zeroes are realizable.

The z-transfer function for any second-order module may be expressed

a o + alz-1 + a2 z-2

D(z) = (6-1)
1 + blz + b2z-2

The eleven programming forms presented here will be for the second-order

module of equation (6-1). For a higher-order digital filter, the following

procedure applies: 1) Section D(z) into second-order modules, 2)analyze

each module using the computer-aided design procedure to be developed

later, and 3) cascade (or parallel) the resulting designs to realize the

original D(z).

This section will summarize, for equation (6-1), eleven different pro-

gramming forms and the attributes of each needed for quantization analysis
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by steady-state, statistical, and upper-bound techniques. In particular,

the transfer function Tj(z) from the jth quantizer to the filter output

for equation (4-9) and (4-18), and the discrete-time difference equations

necessary for the impulse response from the jth quantizer to the filter

output for equations (4-11), (4-19), and (4-32), will be listed for each

programming form. The tabulation of the eleven programming forms is

a result of [38, 63-66]. Many others are possible as seen in [67-70,76].

Direct Form

The direct programming form for equation (6-1) is shown in Fig. 26.

This form has an A/D or input quantizer, Q1, digital-to-analog (D/A) or

output quantizer Q2 and one internal feedback quantizer Q3. The transfer

functions from each quantizer to the output are

T
l
(z) = D(z)

T
2
(z) = 1 (6-2)

blZ-l + b2z-2
T3(z) - 1 

1 + blz-l + b2z- 2

The integrands for equation (4-18) are thus

T (z) T (l/z) (a0z2 + alz + a
2

)(a2)/b
2

Z z(z2 + blZ + b 2 )(z2 + blz/b2 + 1/b2 )

T2 (Z) T2 (l/z) (6-3)
z z(6-3)
z z
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eo (k)q2

Fig 26. The Direct Form.

ei(k 
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T
3
(z) T3 (1/z) (blz + b2 )(blZ + b2z )/b2

z z(z2 + bl z + b 2 )(z2 + blz/b2 + 1/b2 )

For programming and impulse testing the difference equations for the

direct form are

ei(k)q ei(k) + nl(k)

eo(k) = a0 ei(k)q+ alei(k - l)ql+ a2ei(k- 2)ql

-bl eo(k - l)q3 - b2eo(k - 1)q3 (6-4)

eo(k)q2 = eo(k) + n 2 (k)

eo(k)q3 = eo(k) + n3 (k).

The filter output variable is eo(k)q2. This completes the description of

the direct programming form.

For all eleven programming forms the standard notation of Q1 for

the filter input quantizer and Q2 for the filter output quantizer has been

adopted for convenience. The transfer functions Tl(z) and T2
(z) are then

always to be for the input and output quantizers respectively. These

transfer functions will be identical for all the programming forms as

given in equation (6-2).

Modified Direct Form

The modified direct programming form for equation (6-1) is shown in

Fig. 27. This form differs from the direct form only in the feedback



2-141

ei(k)

Fig. 27. The Modified Direct Form.

eo(k)q2
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loop. This form has two internal quantizers; Q3 is identical to the

direct form hence T3(z) is given by equation (6-2); Q4 has been added and

its transfer function to the filter output is displayed below:

-1z

T4(z) =
1 + blz-1 + b2 z-1 (6-5)

The integrand for equation (4-18) for Q4 becomes

T4(z) T4 (1/z) z2/b2

z 2 2 (6-6)
= z(z2 + b1 z + b2)(Z + blz/b2 + l/b2)

For programming and impulse testing the difference equations for

the modified direct programming form are

ei(k)q = ei(k) + n1 (k)

eo(k) + aei(k -+ alek - )q + a2ei(k - 2)q

+ m(k - l)q

eo(k)q2 = eo(k) + n2(k) (6-7)

eo(k)q3 = eo(k) + n3(k)

m(k) = -bleo(k)q3 - b2eo(k - 1)q3

m(k)q = m(k) + n4(k).
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Standard Form

The standard programming form for equation (6-1) is presented in Fig.

28, This form has two internal quantizers, Q3 and Q
4
. Their transfer

functions to the filter output are

T
3
(z) =

1

z+ bz + b2
(6-8)

T4(z) = z + b
2 + blZ + b2

The integrands for equation (4-18) are

T3(z) T3 (1/z)

T4(z) T4(1/z)

z

z2/b2

z(z2 + b1z + b2 )(z2 + blz/b2 + l/b2 )

(z + bl)(Z + blZ2 )/b2

z( 2 + b1z + b2
2 + b lZ/b 2 + 1/b 2 )

(6-9)

The difference equations for this form are

ei(k)q = ei(k) + nl(k)

eo(k) = aoei(k)q + m2(k - l)q

eo(k)q = eo(k) + n2(k)

m
l
(k) = a2ei(k)q - blml(k - l)q - b2m2(k - 1)q (6-10)
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Fig. 28. The Standard Form.

D
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m
l
(k)q = m

l
(k) + n3 (k)

m2 (k) = alei(k)q + ml
(k - l)q

m2(k)q = m 2 (k) + n4 (k)

where

a1 = al - a0 b

a2 = a2 - a0 b2 - blal.

Modified Standard Form

Again the modified standard form is for D(z) as expressed in equation

(6-7) and is demonstrated in Fig. 29. This programming form differs from

the standard form in its feedback loops. The same internal quantizers

are present as before with a fifth quantizer added. The transfer func-

tions for the three quantizers are

T3(z) = T3(z) in (6-2)

T4(z) = T3(z) in (6-8)

T5(z) = T4(z) in (6-5)

Hence, the integrands for equation (4-18) have been previously shown.
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Fig. 29. The Modified Standard Form.

eo(k)q2
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For programming, etc., the difference equations for the modified

standard form are

ei(k)q = ei(k) + nl(k)

eo(k) = aoei(k)q + m2 (k - l)q

eo (k)q2 = eo(k) + n2(k)

eo(k)q3 = eo(k) + n3 (k)
(6-11)

m
l
(k) = a2 ei(k)q - b

2
eo(k)q

ml(k)q = ml(k) + n4 (k)

m2(k) = alei(k)q + ml(k - l)q - bleo(k)q

m
2
(k)q = m2 (k) + n5(k).

Canonical Form

The block diagram for the canonical programming form limited to

the second-order module of equation (6-1) is shown in Fig. 30. This

form has only one quantizer Q3 whose transfer function to the filter

output is given by

T3(z) = D(z).
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Fig. 30. The Canonical Form.

.eo(k)q

e (k)q

ei(k)



2-149

Therefore, Q3 has the same effect as the input quantizer on the filter

output. The difference equations including quantization are shown

below:

ei(k)q = ei(k) + nl(k)

m(k) = ei(k)q - blm(k - 1)q - b2m(k 2)q

m(k)q = m(k) + n3(k)
(6-12)

eo(k) = aom(k)q + alm(k - l)q + a2 m(k - 2)q

eo(k)q = eo(k) + n2 (k).

Modified Canonical Form

The modified canonical programming form for the second-order D(z)

of equation (6-1) is depicted in the block diagram of Fig. 31. This pro-

gramming form differs from the canonical form by its forward transfer

paths. By moving the multiplier coefficient from m(k)q to ei(k)q the

transfer function for Q3 is changed:

T3 alz + a2 (6-13)
T3(z) = 2

z + blz + b
2

where

1
= al - a b

a2 = a2 - a0 b2 '
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Fig. 31. The Modified Canonical Form.

e o (k)q

ei(k)
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The integrand for equation (4-18) for this transfer function is

T3 (z) T3 (1 /z) (31z + a2 )(alz + a2 z )
~z = 2 2 (6-14)

z(z + blz + b 2 ) ( 2
+ blz/b 2 + 1/b2 )

The difference equations for the modified canonical programming form are

shown below:

e
i
(k)q = e

i
(k) + n

l
(k)

eo(k) = aoei(k)q + alm(k - l)q + a
2
m(k - 2)q

eo(k)q eo(k) + n2(k) (6-15)

m(k) = ei(k)q - blm(k - l)q - b2m(k - 2)q

m(k)q = m(k) + n3 (k).

The six programming forms discussed to this point have all required

the programming coefficients a
i

and b
i
of equation (6-1), or were easily

calculated from them. The last five forms which are to be presented now

will require more effort to find the correct form for D(z) and the proper

programming parameters for the difference equations.
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Parallel Form

The general block diagram for the parallel programming form for

a second-order D(z) is shown in Fig. 32. The form may be used if

and only if the second-order module has real poles P1 and P2. Hence,

D(z) must have the form

D(z) = ao + R1 + R2 (6-16)

z-pl z-p2

The constants R
1
and R

2
are real numbers representing the residues of

poles P1 and p2, and P1 should be different from P
2
.

The coefficients gi shown in Fig. 32 must satisfy the following

relationships:

gl g2 = (6-17)

g3g4 = R2

In order to minimize the magnitude of the parameters gi the following

choices were arbitrarily made:

gl= 
=

r

g2 = R 1/gl

(6-18)

g3 = vR

g4 = R2 /g3

The transfer functions from the internal quantizers to the filter

output were obtained:

g2
T3(z) 9- (6-19)3 z-p1
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eo (k)q

Fig. 32. The Parallel Form.
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g4
T (z) =

Z-P2

The integrands for equation (4-18) corresponding to (6-19) are

T3(z)T3(1/z) = -g2 z/P1

z z(z-p1) (z-1/p1)
(6-20)

T4(z)T4 (1/z) = -g4 Z/P2

z z(z-p 2) (z-1/P2)

The difference equations for the parallel form are

ei(k)q = ei(k) + nl(k)

eo(k) - aoei(k)q + g2ml(k-l)q + g4m
2
(k-l)q

eo(k)q = eo(k) + n2 (k)

(6-21)
ml(k) = glei(k)q + Plml(k-l)q

ml(k)q = ml(k) + n3 (k)

m2 (k) = g3 ei(k)q + P2m2(k-1)q

m2 (k)q = m2 (k) + n4(k) .

Please note that the parallel form can realize only real poles, but

it is capable of realizing either real or complex zeroes.

Cascade Form

The cascade programming form for a second-order digital filter

module essentially factors the module into first order stages and

realizes each stage individually. If each first order stage is

implemented in the manner of Fig. 30; the resulting cascade form is
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shown in Fig. 33. A requirement for this form is that

D(z) = ao (z-ql) (z-q
2
) (6-22)

(z-P 1 ) (z-P 2 )

where qi and Pi are real zeroes and poles. Also, the following

relationships must be satisfied:

ao = glg2g4

g3 -gl1g 2 (6-23)

g5 9g2g 4

The cascade form has two internal quantizers which are described

by the transfer functions

T3(z) = D(z)/g1

(6-24)

T4(z) = g4 z-q2

z-P
2

The integrands for equation (4-18) are

T3(z) T3 (1/z) = 1 D(z) D(l/z)
g z

z
(6-25)

T4 (z) T4 (1/z) = -g4(z-q2)(2-q2z)(p2

z z(z-P2 )(z-l/P 2)

The difference equations for this cascade form are displayed below:

ei(k) = ei(k) + nl(k)
(6-26)

ml(k) = glei(k)q + Plml(k-l)q1i q + pim1 ( lq

ml(k)q = m (k) + n3 (k)
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Fig. 33. The Cascade Form.

ei (k)q

ei (k)

eo (k)q
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m2(k) = g2 ml(k)q + g3 ml(k-l)q + P2m2 (k-1)q

m2 (k)q = m2 (k) + n4(k)

eo(k) = g4m 2(k)q + g5 m2 k-1)q

eo(k)q = eo(k) + n2 (k)

The parameters gi, i=l, 5 in equation (6-26) must be found using (6-23).

Since there are three equations with five unknowns, an arbitrary choice

for gl and g2 is made as follows:

gl = 1.0
(6-27)

g2 = VTao-

If ao is zero, this form cannot be realized.

This completes the cascade form. In summary, this programming form

is applicable to a second-order digital filter module when it is

possible to cascade first-order stages programmed in the canonical form.

Modified Cascade Form

Of the many possible ways of implementing first-order stages,

one other technique was selected which employs the modified canonical

form for each first-order section (see Fig. 34). This programming

form is labeled modified cascade; it requires D(z) to be factorable

into real poles and zeroes as in equation (6-22).

The transfer functions from the three internal quantizers to the

filter output are given below:

T3(z) = g3g4(z-q2)

(z-p 1 ) (z-P 2 )
(6-28)
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ei (kq

ei(k)

m2 (k)q

eo(k) q

Fig. 34. The Modified Cascade Form.

K
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Z -q2
T4 (z) = g4 

z -P2

T5 (Z) = g6

z-P2

where the parameters gi are restricted by

g1g4 = ao

g2 g3 = (P1-ql)g1 (6-29)

g5 g6 = (2-q2)g4 

Since there are three equations and six unknowns, arbitrary choices

are again made for gl, g2, and g4 as follows:

gl = 1ao.

g2= (P1 +l)/2

g3 = (P1 -ql)gl/g2 (6-30)

g4 =a/gl

g5 = (P2+ 1 ) /2

g6 = (P2-q2 )g4 /g5

Using these parameters, the following difference equations may be used

to implement this programming form:

ei (k)q = e
i
(k) + n

l
(k)

m2 (k) = glei(k)q + g3ml(k-l)q

m2(k)q = m2(k) + n4 (k) (6-31)

eo(k) = g4m2(k) + g6m3 (k-l)q

e,(k)q = eo(k) + n2(k)

m
l
(k) = g2ei(k)q + Plml(k-l)q

ml(k)q = ml(k) + n3 (k)
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m3 (k) = g5m 2(k)q + p2m3(k-1)

m3 (k)q = m3 (k) + n5 (k) .

X1 Structure

The last two programming forms to be presented are designed

for a second-order D(z) with complex poles. The appropriate

expression for the transfer function is

D(z) = a + A + A*
z+p z+p,

where a
o
has been previously defined, p and p are complex conjugate

poles, and A and A* are complex conjugate residues.

The first implementation of (6-32) is depicted in the block dial

of Fig. 35. The parameters indicated in the figure are defined beloi

gl = -Re (p)

g2 = Im (p)

g3 = 2 Im (A)

g4 = 2 Re (A)

The two internal quantizers, Q3 and Q4, are described by the

transfer functions

T3(z) = g2
zz+blz+b2

T4 (z) = z-g1
z2+blz+b2

The corresponding integrands for equation (4-18) are

T3 (z) T3 (1/z) = g2 z2/b2

z z(z2+blz+b2) (z2+blz/b2+l/b
2
)

6-32)

gram

W:

(6-33)

(6-34)

(6-35)
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Fig. 35. The X1 Structure.

ei (k)q

ei (k)

eo(k)q
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T.(z) T4 (1/z) = (z-g) (-glz2 )/b2

z z(z+blz+b2 ) (Z'+blz/b2 +l/b2 )

The difference equations for the XI structure are enumerated below:

ei(k)q = ei(k) + nl(k)

eo(k) = aoei(k)q + m2 (k-l)q
(6-36)

eo(k)q = eo(k) + n2 (k)

m
l
(k) = g3ei(k)q + glml(k-l)q - g2m2

(k-l)q

ml(k)q = ml(k) + n3 (k)

m2 (k) = g4 ei(k)q + glm2 (k-l)q + g2ml(k-1)q

m2(k)q = m2 (k) + n4 (k) ·

X2 Structure

The last programming form presented in this paper is the X2

structure of Fig. 36. The transfer function D(z) must be expressed

in the format of equation (6-32) in order to use this form.

This programming form has two internal quantizers whose transfer

functions to the filter output are

T3(z) = g3z + (g2 g4 - glg3) (6-37)

z 2 + blZ + b 2

T4 (z) = g4z - (g2g3 + glg4)

z2 + blZ + b2

where

gl =-Re (p)

g2 =
I
m (p) (6-38)

g3 =-Im (A)

g4 = Re (A)



2-163

ei (k)q

Fig. 36. The X2 Structure

ei(k)
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The integrands for equation (4-18) are

T3(z)T3(1/z) = (g3z+6 1) (g3z+61 z2 )/b2

z z(z2+blz+b
2
) (z2+blz/b2 + 1/b

2
)

T4 (z)T4 (1/z) = (g4 z+62) (g4 z+62 z2 )/b2

z z (z2 +blz+b2 ) (z2 +blz/b2+l/b 2)

where

61= g2 g4 - glg3

62 =-g2g3 - g1 g4

The difference equations for the X2

e
i
(k)q = e

i
(k) + nl(k)

eo(k) = aoei(k)q + g3ml(k-l)q +

eo(k)q = eo(k) + n
2
(k)

ml(k) = glml(k-l)q - g2m2 (k-l)q

ml(k)q = ml(k) + n3 (k)

m2(k) = 2 ei(k)q + glm2(k-l)q +

m2 (k)q = m2(k) + n4(k) .

This completes the X2 structure.

structure are listed below:

g4 m2(k-1)q

g2ml(k-l)q

Summary of Programming Forms

This section has summarized the essential characteristics of

eleven programming forms for a second-order digital filter module.

All of the equations necessary to perform steady-state, statistical,

and error bound analyses have been determined. A pattern may be

observed in the formats of the relations for equation (4-18), the

(6-39)

(6-40)
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residue evaluation equation for statistical analysis. All of the

integrands fall into the following formats:

F1(Z) = Y3(YoZ2+Y1z+Y2) (Yo+YlZ+Y2z 2 )

z(z 2+b Z+b 2 ) (z2 +blz/b2+l/b2 )
(6-41)

or

F2 (z) = Y2 (z-y 1 ) (1-Ylz)

z(z-YO) (z-l/yo)

Table 2 displays the respective equations for each programming form

using equation (6-41).

Many other characteristics of each programming form should also be

investigated; for example, the coefficient sensitivity and the deadband

effects are also important for good digital filter operation.
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Table 2. Integrands for (4-18).

Parameters
Programming Quantizer Format Y Y2 Y3
Form 3

A11 Q1 F1 ao al a2 1/b2

Q2

Direct Q3 F1 0 bl b2 1/b2

odified Q3 F1 0 b b2 1/b2

irect
Q4 F1 0 0 1 1/b2

Standard Q
3 F1 0 0 1 1/b2

Q4 FF 0 1 b
1

1/b2

odified Q3 F1 0 b
1

b2 1/b2
Standard

Q4 F1 0 0 1 1/b2

Q5 F1 0 0 1 1/b2

Canonical Q3 F1 ao al a2 1/b2

Modified Q3 F
1

0 al a2 1/b2
Canonical

2Parallel Q3 F2 P1 0 g2/P

Q 3 F2 0 ° 2/P,
2

Q4 F2 P2 0 -g4/PF

Cascade F1 ao a1 a
2

1/g2b

4 F2 P2 I 2 42F

2 2
Modified Q3 F 0 1 2 3g/pp2

4 2
Q 4 F2 P2 -2p2

Cascade Q4 F2 2 -g4/P2

Q5 F2 P2 6g6/P2
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Table 2. Integrands for (4-18). (Cont'd)



VII. COMPUTER AIDED DESIGN

In the design of complex system, the digital computer serves as

an essential tool in synthesis and design verification. Computer

aided design (CAD) programs are effectively employed in the synthesis

of digital filters in three ways: transfer function synthesis,

coefficient quantization, and programming form selection.

Transfer Function Synthesis

The digital computer has been used extensively in the design of

digital filter transfer functions [30,71-74]. Nonrecursive designs

using linear programming has been implemented by Rabiner [73] while

Parks and McClellan [72] using polynomial interpolation techniques.

Rabiner et al [30] also used a steepest descent technique to obtain

FIR filters with minimax error in selected bands.

Recursive digital filters have been synthesized using sampled

data transformations by Golden [71]. Robinson and Robinson [74]

have demonstrated a CAD program for taking z-transforms. Steiglitz

[75] has used nonlinear optimization techniques to obtain recursive

digital filter approximations to arbitrary frequency responses.

2-168
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Coefficient Quantization

Avenhaus [48] has investigated the effects of coefficient optimi-

zation for reducing the coefficient wordlength. A given filter is

designed and its coefficients are founded. Then an optimizing search is

undertaken to find other sets of coefficients which meet the design

criteria with a shorter wordlength.

Much work is left to be done in the proper quantization of digital

filter coefficients and CAD will surely play a major role in future

developments in this area.

Programming Form Selection

A CAD program, listed in [49], has been developed which analyzes

the signal amplitude quantization errors in the eleven programming

forms presented in Chapter 6. The program, written in FORTRAN IV,

is an aid to implementing digital filters for any application, the only

restriction is that the filters be expressable as second order stages

as shown in equation (6-1).

General

The filter implementation program actually consists of eleven

parts, one for each programming form discussed in the previous section.

Each programming form is analyzed using steady-state, statistical,
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and upper bound techniques. The system weighting constants Kssj, Kstj,

and Kub
j

are calculated using the equations of Table 1. Kss
j

and Kst
j

were computed by both equations for debugging purposes; Kub
j
was

determined using the second equation. A weighted average of these

constants was also used:

Kwaj = XlKss
j
+ x2Kst

j
+ A3Kubj , (7-1)

where

x1 + 2 + 13 = 1.

Therefore, a weighted average error can be calculated by

S I

[eO]wa Kwaj j
j=l

The weighting constants \i may be adjusted by the designer to emphasize

the steady state, statistical, or upper bound errors.

The filter implementation program may be used in two modes, one

for stored-program computers and one for special-purpose hardware; the

two modes are distinguished by the manner in which the quantizer step

lengths are chosen. In both the assumption is made that truncation
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(or LSB-1) quantizers are used in the system. All errors must be

halved by the user if roundoff quantizers are present.

In the stored program mode the maximum error hj of the jth

quantizer is fixed by first simulating the ideal digital filter

response to a "worst case" step input, which is an A/D input word

of all "ones." During the transient response to this step, the

maximum value of the filter output and internal variables is recorded.

After the simulation has run a sufficient number of iterations for conver-

gence, sav 100, the maximum values are rounded up to the nearest

power of two. Since the computer wordlength is a fixed number Lr,

the quantizer intervals are found by

hj Varmax rounded-up (73)

2Lr

h1 is always assumed equal one.

In the special-purpose computer mode the register lengths are

not fixed; therefore, a different method is used to find hj. The

philosophy of this mode is to balance the effect of each quantizer

in the system so that they all have relatively equal error contribu-

tions. This balancing is done by dividing equation (7-2) by Kwal

(with h
i

- 1):

Eeo]wa =-l+ r Kwaj hj
J=2 (.77-4)

Each term in the summation is forced to be less than or equal one

(to insure that the A/D will introduce an error as large or larger
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than the other quantizers) by choosing

hj < Kwal * (7-5)

Kwaj

A further restriction is that hj be a power of two; hence the ratio

Kwal/Kwaj is rounded down to the nearest power of two to find the

actual hj to be used:

hj = [Kwal/Kwaj ] rounded down- (7-6)

Flow Charts

Fig. 37 demonstrates the flow of information in the main section

of the filter implementation program. The input data to be given to

the program is summarized below:

1) Transfer function coefficients in (6-1)
ao, al, az, bl, b2

2) Register lengths
A/D, D/A, and wordlength of the stored-program computer
or coefficient wordlength for the special-purpose computer.

3) Weighting coefficients in (7-1)

X1, X2, X3

This is all the information needed to completely analyze the quantiza-

tion errors for all the programming forms.

The first major task in the program is to find the poles and

zeroes of the transfer function D(z) and to set three flags which omit

those programming forms which are unrealizable. The main program

then calls a subprogram for each realizable programming form. Each

called subprogram completely analyzes the quantization errors

characteristic to that particular form and prints their detailed

description. At the end of the program, final summaries of each

program mode are listed for easy cross-reference.

p
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SET FLAGS TO SKIP

UNREALIZEABLE FORMS
T

CALCULATE XI AND

XII STRUCTURES

I o

Fig. 37. Flow Chart of Main Program.
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A general flow chart describing a subroutine for any given

programming form is shown in Fig. 38. The first task is to calculate

all of the parameters needed for the difference equations of the

specified programming form; next, these parameters are quantized.

The simulation difference equations are then calculated once for

the step response and once for each quantizer in the system. During

these simulations the system constants Kssj, Kstj, and Kubj are

calculated. Finally the steady-state, statistical, and upper bound

errors are calculated, as well as the weighted average error of

equation (7-2), for both modes of program operation.

Source Listing

The filter implementation program consists of approximately 1800

source statements and is available in [49]. Also, a limited

number of printed listings are available from Auburn University.

Summary

The filter implementation program has been developed using an

IBM 360/50 using FORTRAN IV and OS360. In its final form the program

takes approximately 3.5 minutes to compile and 25 seconds to load and

execute. The execution time may be trimmed by limiting the simulation

iterations to a smaller number, say 10 to 20.

Now the CAD program will be used to analyze two digital filters,

one for each program operating mode.
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ENTER

CALCULATE hj FOR

STORED PROGRAM MODEI

SET QUANTIZER(IJK)

FOR IMPULSE TEST

f'

'

CALCULATE hj AND PRINT ERRORS

FOR SPECIAL-PURPOSE COMPUTER MODE

Fig. 38. Flow Chart for Programming Form.

CALCULATE AND QUANTIZE

DIFFERENCE EQUATION PARAMETERS

INITIALIZE VARIABLES, SET STEP

INPUT, SET IJK=O

CALCULATE SIMULATION EQUATIONS

FOR 100 ITERATIONS TO OBTAIN

MAXIMUM VALUES AND SUMS OF

eo, leol, and eo2

PRINT Kss, Kst, Kub

PRINT ERRORS FOR STORE

PROGRAM MODE

YES

NO~~N140~~~

NO IJK=4

VES
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Stored Program Mode

Consider the second order digital filter

z2 + .75z + 0.125 (7-7)D(z) =
z2 + .50z + .0525

Suppose that this filter is to be realized using a 16-bit minicomputer

using a 11-bit A/D and 13-bit D/A as input-output equipment. The com-

puter-aided design (CAD) program may be used in the stored-program mode

of operation to aid the designer in programming the minicomputer. Table

3 is the final summary of quantization errors attributed to the filter

above for its realizable programming forms. The D(z) in (7-7) has real

poles and zeroes; therefore, the X1 and X2 structures may not be used.

Using the weighted average errors in Table 3, the CAD program rec-

ommends that the filter in (7-7) be programmed by first the modified canon-

ical form; and second, the parallel form. Note that all the programming

forms give relatively good results; this is due to the fact that the

internal quantizers and output quantizers contribute only a minor part

of the total quantizing error. The A/D and D/A wordlengths chosen in

this example are responsible for these results.
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Special-Purpose Computer Mode

Suppose that a special-purpose computer is to be constructed to im-

plement the following z-douain transfer function:

D(z) 2 1.862z + .895 (7-8)

z2 _ .2500

Again, if an 11-bit A/D is to be used, the CAD program gives the results

shown in Table 4. From the table, the weighted average error suggests

that the direct form is best; the modified canonical form, second.

Direct form. The program prints out an analysis of each programming

form which may be used for (7-8). See Table 5. The system error weight-

ing constants (KBS, Kst, and Kub) are summarized as well as the X's of

(7-1), the maximum quantizing error h' of each quantizer, and the form

factor. The form factor is interpreted as follows

FORM = I,J,

where

I = total number of bits for the register

J = number of bits to the right of the binary point.

A negative J indicates the least significant bit has a value greater

than one. From Table 5, h2 = 2h
I
and h; - 4h

i
. The CAD program always
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TABLE 5: The Direct Printout

STEADY-STATE ANALYSIS
KSS(1) = 0.044
KSS(2) - 1.000
KSS(3) - 0.333

STATISTICAL
KST(1)
KST(2)
KST(3)

ERROR BOUND
KUB(1)
KUB(2)
KUB(3)

ANALYSIS
= 1.426
= 0.577
= 0.149

ANALYSIS
= 5.009
= 1.000
= 0.333

SPECIAL-PURPOSE COMPUTER
LAMBDA(1) = 0.333
LAMBDA(2) = 0.333
LAMBDA(3) = 0.333

STEADY-STATE
PERCENT
PERCENT
PERCENT

MODE
H(1) - 1.0
H(2) = 2.0
H(3) - 4.0

ERROR = 3.377
Q1 = 1.3
Q2 = 59.2
Q3 = 39.5

RMS ERROR = 3.177
PERCENT Q1 =
PERCENT Q2 =
PERCENT Q3 -

44.9
36.3
18.8

MAXIMUM ERROR BOUND - 8.343
PERCENT Q1 = 60.0
PERCENT Q2 = 24.0
PERCENT Q3 = 16.0

WEIGHTED AVERAGE ERROR = 4.966
PERCENT Q1 = 43.5
PERCENT Q2 = 34.6
PERCENT Q3 = 21.9

FORM
FORM
FORM

- 11,0
= 10,-1
= 9,-2
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assumes h' - 1. Also, the form factor of Q2, the output quantizer, sug-

gests that a 10-bit D/A may be used.

Modified canonical form. The CAD program output for the modified

canonical form is shown in Table 6. Note that h - 2hi and h3 = hi for

this programming form.

Closed-Loop Comparison

The second-order digital filter in (7-8) has been analyzed in [53]

for a closed-loop sampled-data control system. The block diagram for

the control loop is shown in Fig. 39. Statistical and upper bound tech-

niques were employed to design the compensator of the control loop for

both the direct and modified canonical forms; system simulations were

employed to verify the results. Table 7 presents a comparison of the

open-loop results of this paper and the closed-loop results of [531].

Note that they agree very closely.

One observation should be made at this point. The register lengths

determined by the open-loop design procedures of this paper are in gen-

eral larger than those required in closed-loop applications. Stable

feedback systems generally tend to reduce the maximum values of the dig-

ital filter variables and thus the number of bits needed to represent

these variables in the special-purpose computer.
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TABLE 6: The Modified Canonical Printout

STEADY-STATE ANALYSIS
KSS(1) = 0.044
KSS(2) - 1.000
KSS(3) = -0.956

STATISTICAL
KST(1)
KST(2)
KST(3)

ERROR BOUND
KUB (1)
KUB(2)
KUB(3)

ANALYSIS
= 1.426
= 0.577
- 1.303

ANALYSIS
- 5.009
= 1.000
= 4.009

SPECIAL-PURPOSE COMPUTER
LAMBDA(1) = 0.333
LAMBDA(2) = 0.333
LAMBDA(3) = 0.333

STEADY-STATE
PERCENT
PERCENT
PERCENT

MODE
H(1)
H(2)
H(3)

- 1.0
- 2.0
- 1.0

FORM - 11,0
FORM - 10,-1
FORM - 12,0

ERROR - 3.000
Q1 = 1.4
Q2 = 66.7

Q3 = 31.9

RMS ERROR = 3.884
PERCENT Q1 =
PERCENT Q2 =
PERCENT Q3 =

36.7
29.7
33.6

MAXIMUM ERROR BOUND = 11.019
PERCENT Q1 = 45.5
PERCENT Q2 = 18.1
PERCENT Q3 = 36.4

WEIGHTED AVERAGE ERROR - 5.968
PERCENT Q1 = 36.1
PERCENT Q2 = 28.8
PERCENT Q3 = 35.1
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TABLE 7: Open-Loop Versus Closed-Loop

Programnning Open-Loop Closed-Loop
Form Results Results [17]

Direct h
i

- 2h; h
i

- h
i

h= - 4h; h
3
= 4h

Modified h; ' 2h' h' = h;
h2 h 2 = h

Canonical h3 = hi h3 = .5h1
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Conclusion

This section has presented a computer-aided design technique useful

in implementing digital filters expressed as z-domain transfer functions.

Two examples have been given to illustrate the stored-program and special-

purpose modes of operation of the CAD program. Also, the program,.which

analyzes the filter's "open-loop" quantization errors, gives results closely

matching a "closed-loop" design. This CAD program should be used as a

tool for obtaining a "first guess" at the best way to program a digital

filter. If a closed-loop simulation is available for the system in which

the digital filter will be used, then the CAD program design may be ad-

justed to give better loop performance.

Although the program as presented has been designed for second-order

modules, it can be used as a subroutine in larger programs to match pole-

zero pairs for higher order realizations, or to indicate the proper

cascade ordering of second-order modules. The CAD program may be a power-

ful tool to the digital filter (or controller) designer if its results

are properly interpreted.



VIII. APPLICATIONS OF DIGITAL FILTERING

Digital Filtering has found many diverse applications in recent

years. This section lists several of them and points the interested

reader to the open literature for detailed descriptions.

The following list presents typical applications for digital filters:

1. Sampled-Data Control Systems
a. General [38, 77]
b. Pendulous Integrating Gyroscopic Accelerometer [78, 79].
c. Saturn V Thrust Vector Control [80, 81]

2. Speech Processing
a. General [82]
b. Vocoder [83]
c. Equalizers [84]

3. Radar and Sonar Signal Processing
a. General [85, 86]
b. MTI Filters [87, 88]
c. Tracking Filters [89, 90]

4. Spectral Analysis and Synthesis
a. Narrow Band Filters
b. FFT [91]
c. Frequency Synthesis [92]

5. Vibrations and Acoustic Testing [93]

6. Image Processing
a. General [24, 94, 95]
b. Image Enhancement [94, 95, 96]
c. Pattern Recognition [97]

7. Seismic Processing [7, 9]

8. Biomedical Processing [94, 95, 97, 98]

9. Synthesis of Speech and Music [99]

Many other applications of digital filtering are also important

with the number of new ones ever increasing.
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I. INTRODUCTION

In recent years a trend has been developing to replace analog sys-

tems with digital systems. This rate of replacement has been directly

related to the technological advances in the manufacturing of digital

logic building blocks. With the advent of large-scale-integration, a

particular class of digital networks, called digital filters, has be-

come economically practical in such areas as stabilization of control

systems, spectrum analysis, voice and speech analysis, radar, medical

electronics and virtually any other analog filter function 11,2].

Digital filtering has been defined in PARTS ONE and TWO as a

computational process consisting of digital multiplications, additions

and delays whereby one sequence of numbers is transformed into another

sequence. This transformation may be specified by a transfer function

in the z-domain, D(z), or by a set of linear difference equations

with constant coefficients. Assuming knowledge of these coefficients,

digital filter realization procedures [1,3,4,5] consist of the design

of a digital system to solve these difference equations. The difference

equations may be solved with a software program and a general purpose

computer or with the use of a special-purpose (SP) computer [6,7,8,9,

10,11,12], a technique which has become increasingly popular.
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In the SP computer realizations, a particular digital filter pro-

gramming form is selected and the computer is designed accordingly

113,14,15,16,17]. Particular attention must be given to assure that

the hardware organization meets the system specifications for coefficient

quantization, signal amplitude quantization, and quantization noise

levels introduced into the system by the digital filter implementation.

At the present time no systematic design procedure has been developed

to accomplish these goals. Typically one designer specifies the digital

filter coefficients and another specifies a hardware implementation.

The state-of-the-art in digital filter implementation is represented

in 11,3,7,8,9,10,12,18,19,20,21]. Perhaps the most interesting are the

IC model in [1] and the programmable design of 112]. The IC model is

available from Autonetics Division of North American Rockwell. A

digital filter implemented with this technology is small and can

realize third-order filters at sampling rates of up to 5kHz. However,

poles must be real and the parallel programming form is the only one

available. The commercial units also have restricted programming

forms, or implementation is done by frequency transformations which

limit their use to applications in which minimum time delay and high

speed sampling are not specified. It has been shown in [14] that some

of the programming forms have different characteristics, and it is

desirable in many cases to be able to select the programming form.

The need for a selectable programming form along with the desirable

features of LSI implementation offer a challenge to the system designer.
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Add the necessity for real-time fault diagnosis and standardized CAD

procedures to the list and the system design goals are complete.

Now that the theory of digital filtering has been presented in

PART TWO, we will examine four mechanization techniques for digital

filters. The four techniques are 1) general-purpose computers,

2) mini-computers, 3) special-purpose computers, and 4) FFT hardware.

A discussion of all techniuqes will be presented starting with

mechanization (implementation) by general-purpose (GP) computers.



II. GENERAL PURPOSE COMPUTER IMPLEMENTATIONS

Of the four implementation techniques, the GP computer is the

least attractive, with the main reason being that most GP computers

possess excessive computing capabilities to be used only for differ-

ence equation calculations. If this were done, there would be large

portions of the computer hardware that would never be used thereby

making this type implementation overly expensive.

GP computers do have a useful application in digital filter

implementation in that they may be used to simulate other implementation

designs (an example being by special-purpose computers) or for real-

time programming of a GP computer to implement a digital filter as well

as other computational chores. Let us now look at these two aspects

of using a GP computer in the design of a digital filter system.

Simulation

The most common implementation of a digital filter is by special-

purpose computer. When designing a special-purpose computer for the

implementation of the filter in a particular programming form, one of
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the first steps that must be done is deciding on word length require-

ments for the input word, output word and internal variable (m(kT - T),

m(kT - 2T), etc. of the difference eqs.) wordlengths and possibly

arithmetic schemes. This can be accomplished by techniques such as

the CAD program presented earlier. Once a design is recommended, it

is good engineering practice to simulate the system on a GP computer

to verify all the design parameters. With most higher level languages,

logical programming may be done such that every aspect of the design

may be simulated. If this approach is taken the system designer may

"change something" and observe its effects; this technique may be

used to "optimize" the final system design.

As an example of a digital filter implementation simulation, the

program below was written in FORTRAN and run on an IBM 360 digital

computer to simulate the "range-switching" filter described in [8]

employed in a nulling type control loop. The program was written so

that the "range-switching" effects on the output of the loop could be

observed and the effect the wordlengths had on the output response for

a particular input, which in this case is a sine wave of specified

amplitude and frequency.
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FORTRAN SOURCE PROGRAM FOR SIMULATION OF PIGA LOOP

WITH A NOISE INPUT

SOURCE DECK
C TIME DOMAIN SIMULATION OF THE COMPENSATED SYSTEM

DIMENSION X1(2),X2(2),X3(2), D(2)

COMMON/COM2/RM(1001), ITER,TES
COMMON/COM1/XP(3,2),BQ(1),C(2)
1 FORMAT(1H ,13,2X,1P9E13.4)
CALL INPUT

2 FORMAT(1H1)
N=1
H=1.o 0E+05
WN=184.0
T=0. 001
GP=56. 2
GT=321000.0

C GDA IS THE TOTAL LOOP GAIN
GDA=0.083
W1=SIN(WN*T)/WN
W2=COS(WN*T)
W3=(1.0-W2)/WN**2
W4=(T-W1)/H
W5= (1.0-W2)/H
W6=WN*SIN(WN*T)
W7=W6/H
GDIG=GAD/GT/GP/(T-W1) *H
WRITE(6,10) GDIG

10 FORMAT(1H0,7HKDIG = ,1PE11.4)
TEST=+2000.0*980.0/4.0
DO 669 NAGL=1,2

669 XP(NAGL,1)=O.O
8 BDC=O.O
BQ(1)=0.0
x1(1)=o.o
X2(1)=0.O
X3(1)=O.O
D(1)=0.0
C(1)=0.0
COFS=O 0
DO 5 1=1,ITER
R=TES*980. *RM(I)

4 WRITE(6,1) I,BDC,BQ(N) ,I (N),XP(1,1),D(N),R,COFS,C(1)
C BEGIN ANALOG PORTION SIMULATION

X1 (N+1)=X1(N)+W1*X2(N)+W3*X3 (N)+W4*(R-GR*D(N))
X2(N+1)=W2*X2(N)+W1*X39N)+W5 * (R-GR*D(N))
X3 (N+1)=W2*X3(N)+W6*X2(N)+W7*(R-ST*D(N))
BDC=GP*X1 (N+1)
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C END ANALOG PORTION SIMULATION
C BEGIN DIGITAL UNIT SIMULATION

UI=BDC
CALL DIGCOM (UI,YP)
D(N+1)=GDIG*YP

C END DIGITAL UNIT SIMULATION
COFS=GT*D(N+1)
Xl(N)=Xl(N+1)
X2 (N)=X2 (N+1)
X3(N)=X3(N+1)

5 D(N)=D(N+1)
STOP
END

SUBROUTINE DIGCOM(U1,YP)
COMMON/COM1/SP(3,2),BQ(1) ,C(2)
AO=1.0
Al=-119./64.
A2=57./64.
B1=0.0
B2=0.0
FX=256.
UI=UI/3.0*FX
EX=1.0
CALL ROUND (UI,EX,FX)
UP-UI

Z BQ(1)=UP*3.0/FX
UI-UI*3.0/FX
IF(ABS(UP)-16.0) 2,3,3

2 C(2)=0.0
GO TO 4

3 C(2)=1.0
UP=UP/16.
IUP=UP
UP=IUP
FX=16.

4 IF(C(2)-C(1)) 4,6,7
5 XP(1,1)=16.*XP(1,1)

XP(2,1)=16.*XP(2,1)
AX=4.0
BX=63.75
CALL ROUND(XP(1,1) ,AX,BX)
CALL ROUND(XP(2,1),AX,BX)
GO TO 6

7 XP(1,1)=XP(1,1)/16.0
XP(2,1)=SP(2,1)/16.
AX=4.0
BX=63.75
CALL ROUND (XP(1,1),AX,BX)
CALL ROUND (XP(2,1),AX,BX)

6 SP(1,2)=-Bl*XP(1,1)-B2*XP(2,1)+UP
XP(2,2)=SP(1,1)
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AX=4.0
BX=63.75
CALL ROUND(XP(1,2),AX,BX)
YP=(A1-AO*B1) *XP(1,1)+(A2-A*B2)*XP(2,1)

+AO*UP
CX=64.
DX=255./64.
CALL ROUND(YP,CX,DX)
DO 1 I=1,2

1 XP(I,1)=XP(I,2)
C(1)=C(2)
YP=YP/FX*3.0
RETURN
END

SUBROUTINE INPUT

RANDOM INPUT
COMMON/COM2/RM(1001),ITER,TES
TES=200.
ITER=301
NRANB=6
CALL RANBIT(NRANB)
CALL RCON1(35187269)
RMAX= (2.**NRANB-1.)/2.
D019 I=1,ITER
RM(K)=IRAN(5)

19 RM(I) = (RM(I)-RMAX)/RMAX
RETURN
END

SUBROUTINE ROUND (A,AN,BN)
X=ABS (A)
S=A/X
IX=X*AN'
XQ=IX
XQ=XA/AN
IF(XQ-BN) 1,2,2

1 A=S*XQ
RETURN

2 A=S*BN
RETURN
END

C
C
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Real Time Programming

A digital filter implemented on a general-purpose computer,

whether large or small, is said to be realized by real-time pro-

gramming. The machine language version (translated from some higher

level language) of the difference equations must execute quickly

enough to meet the sampling rates imposed by the system specifications.

In some applications the general-purpose computer will handle other

calculations as well and will be "time-shared" to perform both duties.

Other times a small process control computer can be dedicated solely

to the digital filter calculations. An example system is shown in

Fig. 2.1.

Generally speaking, future trends will be to design special-

purpose computers to shoulder the digital signal processing tasks, and

relieve the general-purpose computer for more complicated tasks which

exploit its entire computational power as embodied by its versatile

instruction set.



A GP computer being used as a digital
filter in a discrete control loop.

Fig. 2.1.

D(z)



III. MINICOMPUTER IMPLEMENTATIONS

A minicomputer Implementation of a digital filter as described

in [22] will be discussed. Only one reference is used as a background

since it is the only one that has been seen in the literature of digital

filtering. It will be sufficient since any other minicomputer imple-

mentation would follow the guidelines presented.

Hardware Requirements.

The hardware used for the minicomputer implementation is shown in

Fig. 3.1. It consists of a Honeywell H316 minicomputer with two 4096-

word memory modules, a 10-bit analog-to-digital (A/D) converter, a 12-bit

digital-to-analog (D/A) converter, a crystal-controlled real-time clock

and the ASR-33 teletypewriter.

H316 minicomputer. The H316 is a GP minicomputer with a 16-bit

wordlength. Arithmetic is performed in two registers, A and B, and

it is a one-address machine with the A register serving as the accumulator

which will be described in detail later. The memory is divided into

sectors or pages of 512 words each, with the computer having the

capability to reference any of the 512 words within a certain sector.

Single-level indexing and/or multiple-level indirect addressing can be

used to address words outside the current sector or the base sector.

With respect to the arithmetic instructions of the computers

instruction set, there are two modes of operation: single precision

and double precision. Each mode of operation may be entered by the use
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Fig. 3.1. Hardware used in minicomputer implementation.

H316
Minicomputer
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of one instruction, "SGL" for single-precision arithmetic operations

and "DBL" for double precision arithmetic operations. When operating

in the single-precision mode, the A register is used solely as the

accumulator. It is 16-bits long with the left-most bit being the

sign bit and the 15-bits to the right being the most-significant

through the least significant of the magnitude bits which are in a

two's complement code. When operating in the double precision mode,

the A and B registers are used as the accumulator with the sign bit

being in the left-most bit position of the A register. The rest of

the A register contains the 15 most significant bits of the double

precision word with the 15 least significant bits being contained in

the 15 right most bit positions of the 16 bit B register. The left

most bit position of the B register does not take part in arithemtic

operations.

When performing the "add" instruction which will have to be done

many times in difference equations calculations, the contents of the

addressed memory word are added to the contents of A leaving the sum

in A for single-precision addition. If done in double-precision the

contents of the addressed memory word (two memory locations for double

precision) are added to the contents of the A and B registers and the

sum left in them.

The same procedure occurs for multiply for the single or double

precision mode. The addressed word in memory is multiplied by the word

stored in the A or A and B registers and the product left in the A or

A and B registers.
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Fixed point arithemtic is used for all difference equation calcu-

lations. Since an imaginary binary point is assumed, after a multipli-

cation instruction is executed, the computer shifts the product as

required to align the binary point.

Input to the minicomputer is accomplished through 16 input bus

lines into the A register. Several peripheral devices may be connected

to this bus as inputs to the computer. In the case of the.minicomputer

implementation of a digital filter this bus inputs information from the

A/D, ASR-33, and the real-time clock.

Output is accomplished through 16 output bus lines which are tied

directly to the A register and always reflect its contents. For the

digital filter implementation, the output device is the D/A or the ASR-33.

The different input devices are checked by the computer by placing

a code unique to each device on the address bus.

Most peripheral devices are slower than the computer, thereby

making the computer spend much of its time waiting for a peripheral

device to perform its function. It is for this reason that it is

practical to let the computer process other information while a particu-

lar peripheral is performing its I/O function. Then when the peripheral

is finished, it can inform the computer and the computer can give it

another command.

The method of informing the computer of the completion of a task

is called an interrupt. When a peripheral interrupts the H316, it
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finishes executing the instruction presently being performed and then

performs a subroutine jump indirectly through a dedicated memory

location. In short, the dedicated memory location contains the address

of a subroutine to which the computer jumps when an interrupt occurs.

Within this subroutine the computer may poll the peripherals to find

out which one interrupted.

An A/D converter is used as the input interface element to the

computer. The A/D which was interfaced to the H316 is a bipolar con-

verter having a range of -10v to +10v. It has a 10-bit plus sign-bit

output which is input into the most significant 10-bits of the A

register.

The D/A converter accepts and transforms the binary output of the

computer into an analog voltage. A hold register is employed so that

the output voltage will remain constant until the next output occurs.

The D/A used in the minicomputer implementation was built from Honeywell

P-Pac DTL logic. The converter is built from three cascaded Honeywell

CE-071 four-bit converters which consist of a resistive ladder plus

switching network.

To provide for a sampling rate other than that determined by the

computers execution time, a real-time clock was employed. It initiates

each cycle consisting of input, calculation, and output and is built

as a peripheral which furnishes periodic (sample rate) interrupts to

the computer. When an interrupt occurs, the computer goes through one

cycle and then waits for the next interrupt before it goes through the

A:
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cycle again. This allows the operator of the minicomputer to obtain

any desired sample rate.

Operating System

It is the purpose of the minicomputer implementation to be able

to realize in real-time one of eleven different digital filter programming

forms. It is the function of the operating system to set up, control,

and possibly run diagnostic tests if something goes wrong, on the

minicomputer and its peripherals.

A functional block diagram of the operating system (OS) is shown

in Fig. 3.2. Solid arrows indicate a passing of control from one

routine to another, while dotted arrows indicate a passing of parameters.

Only one filter form is shown, but it should be remembered that eleven

such forms are present with similar links to the operating system

Briefly, to realize a digital filter, a particular form is picked

and the parameters which determine the transfer function are input.

The OS will then type back these parameters if desired. Once the filter

form is set up, the OS is instructed to begin execution of that form.

Let us now discuss the different parts of the OS.

Executive. The executive routine (EXEC) initially types a question

mark on the teletype. Whenever the question mark appears the operator

types in one of four commands: MODIFY, LIST, RUN, or TEST. The first

three refer to a particular programming form and are followed by a

number between one and eleven. The TEST command refers to one of seven

diagnositc routines and should be followed by a number from one to seven.
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After one of the four commands is typed in EXEC turns control over to

one of the four routines having the same name. Let us briefly discuss

these routines.

1. Modify. The modify routine inputs the coefficients, quantization

formats, and sample rate for a particular filter form. EXEC determines

which of the eleven forms has been typed in following the command MODIFY,

then transfers control to the modify routine, passing the filter form

number as a parameter.

2. List. The list routine types out the coefficients of a pro-

gramming form followed by the quantization formats and finally the

sample period.

3. Run. To begin the filter processing the operator would type

in RUN followed by the number of the form he desires to use.

RUN has a list of all entry points of the filter forms. When

the RUN routine is entered it immediately obtains the address of the

normal entry point and passes it to the interrupt processer which will

need it at a later time. Then RUN selects the sample period which the

user has specified for that filter form and outputs it to the RTC.

Next, RUN sets the mask of the real-time clock (RTC) and teletype,

starts the RTC, types out a question mark, and transfers control to

the initialization entry of the filter form specified. The filter form

makes its first pass and hangs up in the idle routines at the end.

While in the routine the RTC should interrupt.
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Interrupt processor. When the interrupt occurs, control is passed

to the interrupt processor. This routine must identify what caused

the interrupt and act accordingly.

User's interface. The user interface consists of the teletype

routines plus the data conversion routines. The teletype routines

are relied upon by all the other routines which have to communicate

with the user. The teletype routines handling mumerical data rely on

the conversion routines to convert from decimal to binary and binary

to decimal.

Diagnostics. Seven diagnostic routines are implemented in the

OS to test the hardware and the software structure. One of these routines

may be executed by typing in the request TEST followed by a number from

one to seven. The errors that are checked for are divided into three

categories: hardware errors, errors in the programming of the OS, and

last, user errors.

This completes the discussion of the OS. We will now look at the

assembly programs.

Assembly Programs.

Each of the eleven filter programming forms is realized by a

separate subroutine which has the following format:

ENTRY
INPUT
CALCULATION
OUTPUT
TIME DELAY
PRECALCUATION
IDLE
EXIT
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There are two entry points to each program: one being an initializa-

tion entry point which zero's the internal variables the first time

through the program and the second a regular entry point that is

entered everytime except the first. After entering the normal entry

point a "start A/D" command is given and, while waiting on the input

to become available, a partial sum is formed. As soon as the input

arrives it is shifted to a correct format, multiplied by A0, and the

sum is then completed. The sum is then quantized for output, presented

to the D/A, then quantized in a different format for storage and feed-

back. If overflow is detected during quantization, the word is saturated,

i.e. filled with the largest possible number.

After the output is complete, the internal variable must be shifted

to perform time delay. Then the partial sum for the next pass is begun.

Just enough of the formation of the partial sum is left for the next

pass to occupy the arithemtic unit while waiting on the A/D. During

the "idle" period, the RTC interrupts and the interrupt subroutine

directs control back to the normal entry point.

The coefficients as well as the three shift instructions used in

the quantizing routines are declared as external names so that they

may be altered by the OS.

As an example of one of the eleven assembly language programs the

assembly language program for a second order D(z) in modified canonical

programming form is shown below.
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SUBR MCAN1,ENT1
SUBR MCAN2,ENT2
ENT SHFT61,S1
ENT SHFT62,S2
ENT SHFT63,S3
ENT COEF6,AO
BEL

* INITIALIZE INTERNAL
ENT1 CRA

STA XM1
STA XM2

*CALCULATE OUTPUT DIF]
ENT2 OCP '41

LDA XM1
MPY ALl
DBL
DST TEMP
LDA XM2
MPY AL2
DAD TEMP
DST TEMP
INA '1041
JMP *-1

S1 LRS 4
STA EI
MPY AO
DAD TEMP
SGL
STA SGN

S2 LLS 9
SSC
JMP OK1
LDA SGN
CSA
LSA ='77777
SRC
TCA

OK1 OTA '40
JMP *-1

*CALCULATE FEEDBACK DI
LDA EI
MPY ONE
DBL
DST TEMP
LDA XM1
TCA
MPY B1

VARIABLES

FERENCE EQ.
START A/D

INPUT FROM A/D
WAIT FOR INPUT

IFFERENCE EQ.
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DAD TEMP
DST TEMP
LDA XM2
TCA
MPY B2
DAD TEMP
SGL
STA SGN

S3 LLS 3
SSC
JMP OK2
LDA SGN
CSA
LDA ='77777
SRC
TCA

* PERFORM TIME DELAY
OK2 STA XM

LDA XM1
STA SM2
LDA XM
STA XM1
ENB
NOP
JMP *-1

XM1 DBP 0

EO BSS 1
XM BSS 1
EI BSS 2
XM2 BSS 2
TEMP BSS 2
SGN BSS 1
AO OCT 10000
ALl OCT -22753
AL2 OCT 7357
B1 OCT 3146
B2 OCT 231
ONE OCT 10000

END

Experimental Results

Experimental results were obtained of the minicomputer implementation

previously described.
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First it realized the transfer function of a Euler integrator

D(z) = 1 (II-1)
-1

1 -z

in the direct form at its maximum sampling rate (5.5 KHz). The response

was obtained for an input square wave and as wished, the output was a

triangular waveform with a fine-grained stair-stepped appearance.

Secondly it realized the transfer function of a digital differentiator

D(z) = 1 - z
-
1 (II-2)

in the direct programming form. It's response to a triangular wave-

form, a square wave, was as expected.

Lastly, the transfer function of a digital oscillator was realized

D(z) = (II-3)

1 - 2cos(2nfT)z
- 1 + z

-
2

where T is the reciprocal of the sample rate (5.5 KHz) and f is the

frequency of oscillation. The equation was programmed with b1 =-1.75

which resulted in an output frequency of 450 Hz as predicted by

Eq. (II-3).

Experimentation demonstrated that the direct and canonical forms

had the highest maximum sampling rate. The direct, canonical and

modified canonical forms have minimum sample intervals of less than 200

p-secs. The modified direct form has a minimum interval of about 225 p-secs.
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The parallel and cascade forms have a minimum interval of about 275 P-secs,

while the remainder of the forms have intervals of approximately

300 U-secs.

The number of instructions required to implement the filter forms

(including coefficient storage), ranges from 98 for the canonical to

109 for the modified cascade. The entire operating system occupies

approximately 5000 memory locations including indirect links in the

base sector.

This concludes the discussion on minicomputer implementations of

digital filters. From this discussion it was seen that a minicomputer

can be adapted well for a real-time digital filter implementation; in

fact, much better than the larger SP computers because of the smaller

size. We will now look at even a smaller digital computer implementation,

that of implementation by special-purpose computers.



IV. SPECIAL-PURPOSE COMPUTERS

It is obvious to one that for most realizations of a digital filter,

the general purpose computer and the minicomputer approach have several

disadvantages. The most easily seen disadvantage, as previously mentioned,

is the wasted hardware incurred because of the relative simplicity of

the difference equations that must be calculated for a realization. It

is for this reason that the special-purpose computer approach to realiza-

tion is taken for a majority of the applications of digital filtering.

It will be shown in the following discussion of special-purpose (SP)

computer realizations that they are the most economical (hardware wise)

and demonstrate a great amount of versatility.

The realization techniques by SP computers will begin with the very

earliest method, which was sample and hold devices with analog networks

and conclude with present day commercial models that are available on

the market.

Implementation by Sample and Hold Devices with Analog Networks.

The first SP computer realizations of a digital filter were by sample

and hold devices with analog networks I23]. There are two main ways of

realizing a digital filter in this manner with them being: 1) series

discrete data networks, and 2) feedback discrete data networks. There

is a third way of realization which is a combination of the above two

3-25
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that will not be discussed since it is felt it is not essential to

illustrate the realization technique.

The series discrete data network which is used for the realization

of the discrete transfer function of a digital filter is shown in

Figure 4.1. The transfer functions of the two systems in Fig. 4.1

are related by

D(z) = GhoGc(Z) (4-1)

Since the transfer function of the zero-order hold is (1-e )/s,.it

can be obtained from Eq. (4-1) that

G (s)
Z[ c ] = D(z) (4-2)

1 -z

From this it is seen that given a specific D(z), the transfer function

G (s) of the discrete-data network can be determined from Eq. (III-2)
C

by taking the inverse z-transform.

If Gc(s) is to be an RC realizable transfer function, all the poles

of GC(S) must be simple and lie on the negative real axis of the s-plane

with the exception of the origin and infinity. The zeroes of G (s) may

be located anywhere in the s-plane. Therefore, Gc(s)/s can be expanded

into the following form by partial fraction expansion:

G (s) A m Ak
-c ++ (4-3)
s s k=l s + sk
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where A
o

and Ak are constants and sk = [k = 1, 2, 3,"', ml are simple

negative real poles. The z-transform of Eq. (rIs-3) is

G (s) A m Ak

s 1 C- z - 1 + k ~ T(4-4)
kcl =1-SkT -1

1 - e Z

which has simple positive real poles inside the unit circle IzI = 1,

with only one pole at K - 1. Comparing Eq. (4-4) with Eq. (4-2),

it is seen that in order for G (s) to represent an RC network, the
c

discrete transfer function D(z) must have the following properties:

(1) The number of poles of D(z) must be equal to or greater than

the number of zeroes of D(z).

(2) The zeroes of D(z) are arbitrary in location.

(3) The poles of D(z) must be simple, real and positive, and

lie inside the unit circle Izl = 1 in the z-plane.

It can be shown that for a feedback discrete-data network, the

feedback structure with a zero-order hold and the RC network shown in

Fig. 4.26 is equivalent to the digital filter of Fig. 4.2a [23].

The transfer function of the two systems are related by

D(z) - 11 + GhoH(z)

or s 1 1 - D(z)
Z[ MU I] 1 I__ I_ . (4-5)

1 z- 1 D(z)
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In order to realize H(s) by an RC network, the discrete transfer

function D(z) must have the following properties:

(1) D(z) must have the same number of poles and zeroes.

(2) The poles of D(z) are arbitrary.

(3) The zeroes of D(z) must be simple, real, positive, and lie

inside the unit circle of the z-plane.

The reasons behind these restrictions are discussed in detail in

I23] and therefore are not repeated here.

In summary it may be said that the listed restrictions and limited

flexibility of the above implementation techniques make their use and

practicality almost negligible.

Hybrid Implementation.

After observing the difference equations of several of the pro-

gramming forms which may be used for the realization of a digital

filter, such as the direct and canonical forms, one can see that these

equations might be computed by a device which performs the arithmetic

functions of addition, subtraction, multiplication and time delay.

This suggests the use of summing amplifiers, constant multipliers and

delay elements for the implementation. Also, knowing that digital

filters may be implemented by SP and GP computers suggests the realization

of a digital filter by hybrid techniques, with hybrid meaning that analog

and digital methods are used for the implementation 110]. For most hybrid

realizations digital techniques are used for analog-to-digital (A/D)

0/



3-31

conversion, digital-to-analog (D/A) conversion and time delay with analog

techniques used for the arithmetic functions of addition, subtraction,

and multiplication. This type realization exploits the best and most

natural functions of both analog and digital elements to eliminate a

majority of the restrictions placed on the realization of the previous

section of the literature which used sample and hold devices with analog

networks. Another advantage of the hybrid realization which will be

illustrated shortly is that once a D(z) is obtained, the filter can be

realized directly from it. This will eliminate the need for additional

mathematical manipulation required for the derivation of an s-plane

transfer function from the D(z) as was required by the previous implemen-

tation technique.

The hybrid implementation of a digital filter fits itself to a

majority of the programming forms of a given D(z). For simplicity sake,

we will look at the hybrid realization of a D(z) in two programming

forms; the direct form and the canonical form. These two forms usually

have the simpliest difference equations which must be implemented for

their realization.

For most hybrid designs an A/D converter functions as the sampling

device as well as an interfacing element for the input to the filter.

Integrated circuit buffer registers are usually used to store previous

values (in digital form) of an intermediate variable that is internal to

the controller. D/A converters provide the interface for the output of
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the filter. Variable resistors at the input of a summing amplifier are

usually used to adjust the coefficients of the compensation function

continuously over a wide range of values. The equivalent of a zero-order

hold device is realized at the output of the filter as a result of the

digital data-storage elements within the hybrid unit.

The hybrid filter is designed, in this case, to realize almost

any compensation function up to three zero's over three poles in the

z domain with any sampling frequency up to several thousand hertz. If

a filter of order higher than three is required, several second or third

order filters are cascaded until the desired order is obtained. This

is usually done over constructing a higher order filter because of the

greater coefficient sensitivity for a higher order filter. It is seen that

the hybrid controller is extremely versatile and can be used to realize

a wide range of sampled-data compensation functions; thus, as previously

mentioned, it is not necessary to redesign the unit to change the

compensation function.

To obtain an insight into the design of a hybrid digital filter

for a given D(z), a hybrid implementation will be derived for the direct

and canonical programming forms.

Let us look at the direct form realization first. A second order

transfer function for a realizable digital filter can be written as

a + alz + a-2 E (z)
D(z) = o a 2

-1 -2 E. (z) ' (4-6)
1+bz + b2z 
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sT
where the coefficients a

i
and bi are real numbers and z = e

Equation (4-6) can be rewritten as

Eo() = aEi(z) + alz-Ei(z) + a2-2Ei(Z) - blz- Eo( ) -

b2 z 2E (z) (4-7)

or in the time domain as the difference equation

eo(kT) = aoei(kT) + alei(kT - T) + a
2
ei(kT - 2T) - bleo(kT - T) -

b2 e0 (kT - 2T) (4-8)

where f = 1/T is the sampling frequency. Fig. 4.3 is a block diagram

of the hybrid realization of the second order direct programming form

with double lines denoting digital information and the single lines

analog information. A detailed explanation of the components used for

the realization will be given after the block diagram of the canonical

form is given.

In order to realize the canonical form, we have previously seen

that for a second order D(z), the following difference equations must

be realized.

m(kT) = ei(kT) - blm(kT - T) - b2 m(kT - 2T) (4-9)

eo(kT) = aom(kT) + alm(kT - T) + a2m(kT - 2T) (4-10)
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The block diagram that results for a canonical hybrid realization is

shown in Fig. 4.4. It is easily seen how this form results after

careful consideration of the form of the two difference equations that

must be implemented.

The actual construction of the canonical implementation will now

be discussed in more detail. This form was chosen to be discussed

because of several advantages it has over the direct progranmming form.

One of the primary reasons, which is obvious from Figs. 4.3 and 4.4,

is that the canonical form is much more economical. For example, the

direct form requires two A/D converters whereas the canonical requires

one. Also, if n is the order of the numerator of the D(z) being realized

and m the denominator, the direct form requires n + m delays whereas the

canonical requires the greater of n and m. This is also the case for

D/A converters. It can be said that in general anytime a D(z) is to

be realized by a hybrid realization, choose the programming form which

requires the least hardware.

Let us now discuss the analog and digital components of a hybrid

implementation. Observing the canonical realization of Fig. 4.4, the

first step in a hybrid realization is theconversion of analog informa-

tion into digital information by the use of an A/D. There are two types

of A/D's which might be used, the first being the successive approximation

type and the second the count-up-to type.

Fig. 4.5a is a block diagram of a successive approximation type

A/D converter. The comparator compares the A/D input signal m (the

Preceding page blank
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MSB - Most significant bit
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Fig. 4.5. A/D converters.
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signal m
o

is the output of the feedback summing amplifier as shown in

Fig. 4.4) to the quantized output moq of a D/A converter. The signal

moq is determined wholly by the digital word m(kT) which is in sign

magnitude code. The logic circuitry is programmed to "search for" or

"home-in on" the analog signal mo . Successive approximation type

converters are faster (commercial models are available that will convert

an analog signal to an 8 bit sign magnitude code approximation in

200 nsec) than the counter types which will be described shortly,

therefore they are used in a majority of applications.

Fig. 4.5b is a block diagram of the counter type A/D converter

In general it is slower than the successive approximation type converter

and is therefore used when the input analog signal m
o

is of lower

frequencies. This type of converter operates on the principle of

letting a binary counter count until its output decoded through a D/A

converter is equal to the input signal. When this occurs the counter

ceases operation and its output bit sequence (m(kT)) at this time is

a sign magnitude code approximation of the analog input mo. Before the

converter can be ready for the next conversion the binary counter will

have to be set such that all its bits are logic "0", with this being

completed before each conversion.

Of the two types of converters discussed above, it is recommended

that the successive approximation type be used for digital filter

implementations because of its ability to handle high frequency input

signals.
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The time delay indicated by Eqs. (4-9) and (4-10) can be

provided by clocked flip-flops. This means the information at the

inputs of the flip-flop is held or stored until the clock terminal

is pulsed, at which time the information that is on the input is

transferred to the output terminals.

The D/A converters shown in Fig. 4.4 are the ladder type networks

commonly used in constructing D/A's. From the Figure it is seen

that the contents of the time delays constitute previous values of

m(kT). These digital words are decoded by the D/A converters into

analog signals and are then available for further analog processing;

that is, multiplication and summation.

From Eqs. (4-9) and (4-10) it is seen that the ai and b
i
are

real numbers and may be positive or negative. This suggests the use of

operational amplifier circuits to perform the arithmetic operations of

multiplication and summation. From Fig. 4.6, which illustrates in

detail the summation and multiplication techniques for a second order

implementation in canonical programming form, it is seen that the

algebraic sign of the coefficients is obtained by inverting the output

miq of the ith D/A (multiplying by -1) so that miq and -miq are available.

From Fig. III-6 it is also seen that the magnitude of the coefficients

is obtained by variable input resistors to an operation amplifier.

Any hybrid digital filter implementation should generally be

implemented in the same procedure as the above. If there are variations,

they are usually small, and are left up to the individual designer.
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Digital Implementation.

The adaptation of a small SP computer for the implementation of

digital filters only seems natural after a careful consideration of the

requirements that must be met for the realization of the difference

operations of a particular programming form. Let us consider the

requirements of the difference equations of an arbitrary programming

form since the requirements would hold for all forms. Let our choice

be the difference equations required for the realization of a D(z)

in the modified canonical programming form. These equations for a

second order D(z) are shown below:

eo(kT) = a0 ei(kT) + alm(kT - T) + a2m(kT - 2T) (4-11)

m(kT) = ei(kT) - blm(kT - T) - b2m(kT - 2T) (4-12)

Observing the above equations we see that for them to be physically

realized a device must be used which can add, subtract, multiply,

perform time delay, truncate and provide data storage. A device which

can do all of this is a small SP computer. All of the components of a

digital computer can be organized into four main functioned units as

shown in Fig. 4.7.

Considering the functional requirements of a digital filter, we see

that the Arithmetic Unit of the computer can perform the addition,

subtraction, multiplication, and the truncation required for the

realization of the digital filter. The Memory can be used to perform
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Four functional units of a digital computer.Fig. 4.7.
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the time delay, coefficient storage, internal variable storage, and

input/output storage required for a filter implementation. The Input/

Output functional block of the digital computer will accomodate the

A/D and D/A converters if required for interface for a digital filter

realization. The Control Unit functional block of the digital computer

will accomodate the controller for the digital filter and the data

transfer logic which insures correct routing of data for the real-

ization of the required difference equations. At this point we see

that all of the arithmetic, storage, input/output, and control require-

ments necessary for the implementation of a digital filter have all

been incorporated into the four functional blocks of a digital computer;

i.e., a digital filter may be realized by a small SP computer and its

functional diagram is shown in Fig. 4.8 [7]. The computer is said

to be small because it will be designed to only calculate the difference

equations for a particular programming form. Another reason the resulting

SP computer is small is because of reduced word lengths that are required

thereby requiring less hardware.

Now that it has been shown that a small SP digital computer can

be used for the realization of a digital filter, it is now appropriate

to discuss how one would go about designing a SP computer realization

of a digital filter and the considerations that must be made while doing

this.

The design consists of three parts: first, the determination of

quantization levels in the computer (input quantizing, round-off errors,
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and filter coefficient quantizing); second, the logical design of the

computers components; and third, the interconnection of the computers

components to implement the above mentioned quantization levels.

The first step in the design procedure, the determination of

quantization levels, will not be covered here since it would be a

reiteration of earlier sections of this work. As a reminder

though, one could use several techniques to do this, among them being

the CAD program and different quantization error analysis techniques.

Next consider the second step, which has not been presented

previously and will be discussed in depth.

The second step in the design of any SP computer implementation of

a filter, as previously mentioned, consists of the logical design of

the computer components. All of the components will be grouped into

four main component groups with these being, 1) Input/Output components,

2) Arithmetic components, 3) Memory components and 4) Controller

components. The discussion will begin with the design of the input/

output components.

1. Input/Output Components

When designing the input/output equipment for a digital filter the

first decision to be made is that of what type information will be the

input and output of the filter, i.e. is the input/output of the filter

going to be in analog or digital form.

If the input and output of the filter is in digital form the design

problem will usually be minimal since the filter normally operates on
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digital inputs and outputs in digital form. The only problem that might

be encountered if the application of the filter is such that it will

have digital input/output is that of synchronization between the device

that is supplying the filter its input and the filter. Provisions must

be made when designing the filter such that it will accept a digital

input word from a device which is supplying it.

For many applications of digital filtering, the

filter will be operating in an environment composed mainly of analog

signals which will necessitate input/output interface elements for the

filter. These interface elements will be A/D converters for the input

to the filter and D/A converters for the output of the filter as shown

in Fig. 4.9.

First let us discuss the selection of an A/D converter. The first

decision to be made is how fast should its conversion speed be. In

general this is dictated by the frequency of the input signal or the maxi-

mum sample rate of the filter. If the input analog signal is of high

frequencies and the filter is to sample at a high rate the successive

approximation type converter previously discussed usually would be

better since it is faster than the counter type. Next, a

consideration of the number of bits required for the digital approxi-

mation of the analog signal would be required. This can be determined

by knowing the maximum analog input voltage (Vmax) to the filter and

the maximum allowable quantization step length h. If these two parameters

are known the number of quantization steps required can be determined by
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Fig. 4.9. A digital filter with its interface elements.
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V
Number of Quantization Steps = = QS (4-13)

h

Knowing QS, the number of magnitude bits (n) required for the A/D

converter can be chosen if n is the smallest integer such that

(2n - 1) > QS (4-14)

Now that the bit length and speed of the A/D converter is known,

the next step is the construction or selection of a commercial A/D.

In selecting a commercial A/D, there are many distributors available.

All one has to do to find them is to thumb through an electronics

or computer oriented magazine. A few pointers to remember when

selecting commercial A/D converters are that the faster their conversion

speed, the more they cost, and if internal reference voltages are supplied

they are also more costly than when the user supplies the references.

If a user were to construct his own A/D converter, its cost would

also be determined by its bit length, speed, and the construction of

circuits to supply reference voltages if they are not already available.

There is abundant material available on how to construct successive

approximation and counter type converters.

Chosing the output interface element, the D/A converter, is generally

one of the easier design tasks of designing a digital filter. If a D/A

converter is required, to construct an analog approximation

of the digital output of a filter, there are two basic types from
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which to choose. One type has a current output proportional to the magni-

tude of the digital word it is converting and the other type has a voltage

output. Which type is chosen depends on the application of the digital

filter being designed. Most D/A converters are constructed from resistive

latter type networks.

There are many commercial types of D/A's on the market today and

their manufacturers are easily found by simply, as for A/D's, thumbing

through computer oriented magazines.

There are several characteristics of D/A's that must be considered

when buying one. One consideration is if the D/A will have to be unipolar

or bipolar. Some D/A's will only operate in the unipolar or bipolar mode,

and others can be connected to operate in both. Another important

characteristic to consider is the speed in which the conversion is made

and the settling time of the D/A. If operation of the digital filter is

in the low frequency range, not as much attention will have to be paid

to this as if it were operating in a high frequency range. As anyone

might speculate, the faster the conversion time and settling rate, the

higher the price.

2. Arithmetic Unit

When designing the arithmetic unit of a digital filter, the first

major decision that has to be made is that of parallel arithmetic operations

or serial arithmetic operations. Both schemes have been proposed and both

have their advantages and disadvantages. The question as to which method

is better can only be determined by the designer and his use for his filter.
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In general parallel arithmetic operations are used when there is a

desire for speed and serial arithmetic operations are desirable for a

minimum of hardware. Techniques of performing parallel and serial arith-

metic operations will be considered in more detail shortly.

The second decision that must be made when designing an arithmetic

unit of a digital filter is that of what type binary code to use. Since

the arithmetic unit must be able to add, subtract, multiply and perform

truncation, it would seem logical to use a signed one's complement or a

signed two's complement binary code. The reason for using these codes

over a straight signed magnitude code is because, with them, subtraction

can be performed by an addition process. Also, multiplication can be

performed by a shifting and addition process using these codes. Of the

signed one's complement code and the signed two's complement code it

seems that a majority of the time the two's complement code is used.

Now an example of an arithmetic unit organized in a parallel and

serial fashion will be presented, starting with a parallel organization.

This particular arithmetic unit is able to add, subtract, multiply,

and perform truncation. The code used by the computer is a signed

two's complement code.

The arithmetic unit performs the addition and subtraction process

of two n bit words, A and B, by use of n full-binary-adders (FBA)

connected in the configuration shown in Fig. 4.10. If addition is to

be performed (A + B), A and B are applied to the input of the adder circuit

and the output will be the sum of A and B. If the arithmetic operation
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(A - B) is performed, then A is applied as it is to the input of the

adder and B is two's complemented and applied to the input. The resulting

output of the adder is (A - B).

Now that it has been demonstrated that we can add and substract

two words in two's complement code with FBA circuits, an accumulator will

be defined and it will be shown that with an accumulator and shift

registers, all the arithmetic operations of addition, subtraction and

multiplication can be performed.

A binary accumulator consists of a register, which stores a binary

number (the augend) in signed-magnitude form and upon receiving another

binary number (the addend) in the same form adds the second number to the

first and then stores the sum in the register. The logic diagram of a

parallel binary accumulator is shown in Fig. 4.11. Each flip-flop

in the accumulator functions as a modulo 2 counter. The augend is

initially stored in the accumulator and, during the addition process,

each flip-flop counts parallel incoming pulses representing the addend

bits and generates a carry pulse to the next significant bit when the

flip-flop changes its state from 1 to 0.

To illustrate the use of the parallel binary accumulator in performing

the multiplication and summation process, observe the difference equation

eo(kT) = aoei(kT) + clm(kT - T). (4-15)
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Let

a0o= +1.25 = +(1.01)2

cl = +0.50 = +(0.10)2

ei(kT) = +6. = +(110.)2

m(kT - T) = -3. = -(011.)2

coefficient

++ 0

- -* 1

variable

then

aoei(kT) = +110.
x +1.01

+110.
+ 00.0
+ 1.10
+ 111.10

clm(kT - T) = -011.
x +0.10

-000.
- 01.1
- 0.00
-001.10

and eo(kT) = + 111.10 - 001.10 = +110.0 = +(6.)10 .

A simplified block diagram of a shift register and parallel binary

accumulator implementation of the example difference equation is included

in Fig. 4.12. The following sequence of events is offered to explain

the operation of this implementation.

1. Set the accumulator output to zero.

2. Load cl[+0.10] and m(kT - T)[-011.] into the two shift registers.

3. Apply an accumulate pulse, a shift pulse, another accumulate

pulse, a second shift pulse, and a third accumulate pulse

(abbreviate this sequence by asasa; the output of the accumu-

lator is now clm(kT - T)[-001.10].

4. Clear the shift registers.
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Implementation of an example difference equation.Fig. 4.12.
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5. Load a0 [+l.01] and ei(kT)[+ll0.] into the two shift registers

while leaving clm(kT - T) shared at the accumulator output.

6. asasa; the accumulator output is now aoei(kT)

+ c1m(kT - T)[+110.00].

Thus the difference equation is implemented.

There are other designs for accumulator of Figs. 4.11 and

4.12. One design which is used frequently uses FBA's and clocked

J-K flip-flops. This accumulator design is shown in Fig. 4.13. This

accumulator operates in the same manner as the previously discussed

design when used in calculating difference equations. The FBA's are

used to add the new input to the accumulated sum already in the accumulator

(stored at the output of the JK flip-flops) and once the new sum is

obtained an accumulate pulse is applied which clocks the J-K flip-flops

and causes the input bits of the flip-flops to be transferred to the

outputs where it will be stored until the next accumulate pulse arrives.

As stated previously, serial arithmetic may also be used for digital

filter implementation. Let us consider it now.

Serial arithmetic is used mainly for two reasons: 1) there is

a savings in hardware which will be demonstrated shortly and 2) serial

arithmetic provides for an increased modularity and flexibility in the

digital circuit configurations.
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The two's-complement representation of binary numbers is appropriate

for digital filter implementation using serial arithmetic because addi-

tions may proceed, starting with the least significant bits, with no

advance knowledge of the signs or relative magnitudes of the numbers

being added.

The serial arithmetic unit, as the parallel implementation, must

be able to add, subtract, and multiply and truncate.

The block diagram of a serial adder (subtractor) is shown in

Fig. 4.14.

Briefly it operates in the following manner.

1. All registers and the delay flip-flop are cleared.

2. Words A and B, which are to be added or subtracted, are

shifted into the shift registers to the left of the FBA

with their binary points aligned. The shifting stops when

the LSB of A or B reaches the LSB position in the register.

All registers are now properly set to perform the addition

(subtraction) process.

3. Now shift all registers to the right and the delay flip-flop

for the carry at the same time. The proper sum of difference

will be shifted into the register on the right.

If subtraction is being performed by the above circuit, the subtra-

hend will have to be two's complemented before it is loaded into its

appropriate register. This operation can be performed with a simple
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Fig. 4.14. A serial adder (subtractor) circuit.
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sequential circuit which, for each input word, passes unchanged all

initial least significant bits up to and including the first "1" and

then inverts all succeeding bits. The circuit that will do this is

depicted in Fig. 4.15 [18].

A serial multiplier configuration is shown in Fig. 4.16. This

multiplier will only multiply two positive two's complement numbers,

which does not restrict it, since the circuit of Fig. 4.15 can be

used to two's complement any negative number that must be used in the

multiplication process. Also, one's complement numbers may be multiplied

by this circuit since if they are negative they may be complemented by

a simple circuit to obtain the positive form. If this is done for a

two's complement or a one's complement code, the sign bit of the resulting

product will have to be retained and if it is negative, the resulting

product term will have to be complemented appropriately.

Briefly, the serial multiplier of Fig. 4.16 works in the following

manner. There are three shift registers Z, X, and Y, a serial adder

and a half adder. The sign bit leads the serial word as indicated by

the subscripts of the letters Z, X, and Y. All bits except bits X1 and

Y1 of registers X and Y form a combined shift register. Register Z is

also a circulating register.

Initially, the multiplier is stored in register Y with the sign bit

in Y1 . Next the multiplicand is serially transferred to register Z with

the sign bit in Z
1
. Sign bits Z1 and Y1 do not move during the succeeding

shifting of the contents of registers.
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The value of 1 or 0 of the least significant bit of the multiplier

in Y6 determines whether or not the number bits of the multiplicand

are to be added; and the addition, if there is one, is carried out.

Also during this addition time, the circulating register Z restores its

original contents and the partial product is serially inserted into

register X, occupying bits X2 to X6. The combined register is then

shifted 1-bit to the right; during this shift, any carry bit left in

the delay flip-flop is shifted into X2, and the least significant bit

is now at Y2. The next addition begins at X6 but not at bit Y2.

After the right shift, the least significant bit of the multiplier

in Y6 is lost, as Y1 is not a part of the combined register. Y6 now

contains the second least significant bit of the multiplier, which

possibly could initiate another multiplication.

This process of addition and right shifting continues until all

multiplier number bits are shifted out of the combined register. After

this, the product is available in the combined register with the most and

the least significant halves of the product being stored respectively

in the X and Y registers. When there is no round-off the sign bit will

be in Y1. When there is round-off, 1 is inserted into bit X6 , and the

sign of the product is inserted into bit X1. After this the number in

register X is in desired order [24].

When using the multiplier described above, the product term addition

required for the completion of the difference equation calculation pro-

cess can be handled by the serial adder previously described.



3-63

There are other techniques of parallel and serial multiplication

that will not be discussed here. One technique which makes parallel

multiplication much faster is the Wallace technique described in [25].

Likewise, there is a serial multiplication technique presented in [18]

which makes serial multiplication much faster.

Usually when a difference equation is calculated by a digital

filter, it is reduced in bit length before it is stored in memory or

the output register. It is the purpose of the reduction logic of a

digital filter to do this. Most reduction logic either performs

truncation or round-off with most being truncation type.

The circuitry required for reduction logic is usually simple since

it is usually a combinational logic circuit. Shown in Fig. 3.14

is reduction logic which will truncate a signed magnitude binary word

with 14 magnitude bits (8 to the left of the binary point and 6 to the

right) such that it has 6 bits to the left of the binary point and 2

to the right. The lower four bits that are truncated are omitted from

the truncated word and anytime the untruncated word has a weighted bit

in one of the two most significant bit positions, every bit of the

truncated word will be a weighted representation, i.e. the truncated

word is saturated.

3. Memory Design.

The memory of a digital filter is used for coefficient storage,

interval variable storage which performs time delay, input word storage

and output word storage.
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There are two types of memory that are usually used for digital

filter implementations: 1) flip-flop type memories, and 2) read-only-

type memories (ROM).

A majority of the time flip-flop type memories are used for internal

variable storage (m(kT - T), m(kT - 2T),'--,m(kT - nT)) which is required

for the implementation of the time delays and also for the storage of

the input and output variables of the filter. Shown in Fig. 4.18 is

a flip-flop type memory for the storage of m(kT - T) and m(kT - 2T)

required for the realization of a second order D(z) in the modified

canonical programming form. The word lengths in this figure are 8

magnitude bits with 6 of them to the left of the binary point. For

this type memory construction a time delay is performed when the J-K

flip-flops are clocked; m(kT) becomes m(kT - T) and simultaneously

m(kT - T) becomes m(kT - 2T). The input and output storage registers

are constructed the same way as the first column of flip-flops in

Fig. 4.18.

ROM type memories are used mostly for coefficient storage. The

coefficient values are loaded only once into the ROM and they are

read out when they are needed for an arithmetic operation.

Digital filters may also employ simple single pole, double throw

switches for coefficient storage. This is usually done for versatility

as the coefficients may be changed by a simple toggle of a switch.

The only disadvantage of this is that the coefficients cannot be changed
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while the filter is operating in real-time. It must be stopped and

then started over again. The reason for this is that the switches

can't all be manually thrown during one sample period which would be

required.

4. Controller Design.

The controller of a digital filter ensures the proper calculation

of the difference equations being realized by the filter. As an

example of what a controller must do, let us consider the calculation

of the difference equations of a second -order D(z) in the modified

canonical programming form. The difference equations are shown below

eo(kT) = aoei(kT) + clm(kT - T) + c2m(kT - 2T) (4-16)

m(kT) = ei(kT) - blm(kT - T) - b2m(kT - 2T) (4-17)

Eq. (4-16) will be calculated first as it is desirable to obtain

an output as soon as the input is available to the filter. One

possible operation sequence that the controller may assume for a

parallel arithmetic realization using an accumulator is listed below:

1. Activate the A/D so that ei(kT) can be obtained.

2. Shift the m(kT - T) and m(kT - 2T) storage registers to

perform time delay.

3. Clear the accumulator and its associated shift registers.

4. Load cl and m(kT - T) into their respective shift registers.
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5. Perform the multiplication clm(kT - T).

6. Clear the accumulator shift registers.

7. Load c2 and m(kT - 2T) into the shift registers.

8. Perform the multiplication c2m(kT - 2T).

9. Clear the shift registers.

10. Load ao and ei(kT) into the shift registers.

11. Multiply aoei(kT). The output of the accumulator now contains

aoei(kT) + clm(kT - T) + c2 m(kT = 2T) = eo(kT).

12. Clear the accumulator and the shift registers.

13. Load -bl and m(kT - T) into the shift registers.

14. Multiply -bl m(kT - T).

15. Clear the shift registers.

16. Load -b2 and m(kT - 2T) into the shift registers.

17. Multiply -b2 m(kT - 2T).

18. Clear the shift registers.

19. Load ei(kT) and 1.0 into the shift registers.

20. Multiply l.Oei(kT). The output of the accumulator is now

ei(kT) - blm(kT - T) - b2 m(kT - 2T) = m(kT).

Repeat same process again.

To ensure the correct sequence of operations that must be performed

and the correct transfer of data such that there will be data available

when required, the controller is divided into two parts: 1) the control
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function generator and 2) the data transfer logic. 'Tet , ccintrol Flitlctllo

generator is simply a logic circuit which has as its output a sequence

of pulses (with their timing and spacing very important) which controls

the operation of the arithmetic unit, input/output, and memory. The

data transfer logic is simply combinational logic circuitry which, under

command from the control function generator, transfers data to and from

the memory, input/output, and arithmetic unit.

The first step in designing any controller is the selection of an

operation sequence, such as the previous example. After this is

complete, the control function generator and then the data transfer

logic may be designed.

Now that an approach has been presented by which all the functional

components of a digital filter may be designed, the only remaining

design consideration remaining is the interconnection of all four

functional components such that they may function as a digital filter.

The interconnection of the functional units may be done in numerous

ways. No specific approach will be given here since, in most cases,

each designer of a digital filter has what he thinks is his own unique

and novel way to interconnect the functional components. In general,

the connections of Fig. 4.8 must be made in as modular fashion as

possible for possible LSI realizations. If they vary it will be because

of programming form variation and order of D(z) variation.
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Now that a basic SP computer implementation of a digital filter

has been discussed, it will be in order to discuss variations of the

SP computer implementation.

Implementation by Microprogrammable SP Computer.

The three previously discussed implementation techniques all

have limitations, the most noticable of these being that each type

implementation will realize a D(z) in only one programming form. It

would be advantageous to design a digital filter which would realize

a D(z) in any of the eleven previously discussed programming forms.

In answer to the question that may arise as to why is one pro-

gramming form better than the other; it can be shown, as discussed

previously, that for a particular D(z) with set coefficients and

sampling rate, different programming forms have different quantization

errors. In general, for a particular D(z) that must be realized, it

is desirable to choose the programming form that introduces the least

quantization error, therefore necessitating the need for a digital

filter implementation that can realize a D(z) in several programming

forms. The implementation approach taken to do this is a microprogram-

mable design as discussed in [12].

It will be the purpose of this section to give a discussion of

the computer organization and not to go into too much detail about the

logic design since it is not necessary for an understanding of the oper-

ation of the microprogrammable implementation.
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The prime function of the SP computer is the realization of a

second-order digital filter in a choice of digital filter programming

forms. As for the previous implementations this calls for the solution

of the appropriate difference equations and entails the operations of

addition, multiplication and time delay. The SP computer is binary,

synchronous and parallel, with the calculations to be done using 2's

complement arithmetic. It is a stored program computer, i.e., the

Control Unit looks up the sequence of instructions in the memory,

initiates arithmetic operations and causes operands or immediate results

to be transferred between the Arithmetic Unit and the Memory, as

required by the program instructions. Synchronization of the computer

operations and generation of control pulses is the task of the Control

Unit.

To increase the sampling rate of the filter, a high speed Wallace

Multiplier is employed as described in [12]. Also a rapid-access

memory will be used for the program memory to aid in decreasing the

worst case delay between the time of input sampling and its corresponding

output.

A block diagram illustrating the four basic functional units of

a digital computer is as shown in Fig. 4.7. Therefore, just as for

the previously described digital implementation of a digital filter, the

organization of the SP computer will be divided into these four units.

A detailed block diagram of the SP computer is shown in Fig. 4.19.

The functional blocks in Fig. 4.19 which make up the Input/Output Unit
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of Fig. 4.7 are the A/D converter along with its input register and

the D/A converter and its output register. In many cases the input

register is considered as a part of the A/D converter and is not shown

separately. The Memory is composed of the coefficient storage, variable

storage, the program memory, and their appropriate memory address select

and data select networks. The coefficient register, variable register,

accumulator register, high-speed multiplier and the reduction logic

network comprise the Arithmetic Unit. Included in the Control Unit

are the sample clock, fundamental clock, binary counter, timing level

generator, control matrix, the instruction register and its code

translator. In addition to the four basic functional units which are

generally used to represent digital computers, the SP computer in

Fig. 4.19 employs an Operator Control Unit. The Operator Control

Unit is used to program the SP computer for a particular filter form

and also allows the operator to load the coefficients of the transfer

function, D(z), into the coefficient storage locations. The Operator

Control Unit can also be used in the testing and trouble shooting of

the computer.

At this point it would be desirable to present a brief description

of the operation of the SP computer. For purposes of illustration,

assume that a known transfer function, D(z), is to be realized and that

a specific filter programming form has been selected. With reference

to the functional blocks of Fig. 4.19, the programming form is

chosen by setting the 4 bits in the program register to the proper values

K
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as will be defined later. Next the constants for the difference equations

are manually written into the coefficient storage after switching the

memory control switch, S, to the "1" position. Also, to control the

output reduction logic, load the shift key words into the variable

memory which are called by the quantize instruction to provide the

desired number of accumulator bits to be input to the D/A or to be

written into the variable storage. The programming of the SP computer

is complete and it now awaits the first input signal.

Normal operation begins as the sample clock gates the translated

code of the program register into the program memory address register.

The memory address register contains the address of the first instruction

needed to calculate the difference equations for the filter programming

form chosen. Stored in the program memory in groups of consecutive

addresses are the macro-instructions for all filter programming forms.

For example, the first seventeen locations in the program memory are

the macro-instructions for the direct programming form. Upon receiving

a read pulse, the program memory loads the 16-bit instruction register.

The instruction format is shown in Fig. 4.20. Its four MSB's comprise

the op code (operation code), the next six bits contain the first

operand address (coefficient address), and the last six bits contain

the second operand address (variable address). After the op code is

decoded into one of the eleven available macro-operations, the Control

Unit generates a corresponding sequence of micro-operations. Thus,

each macro-operation is built up as a sequence of elementary micro-

operations.
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Macro-instruction format.Fig. 4.20.
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The remainder of the discussion of a micro-programmable realizations

will be devoted to the specification and organization of the four basic

functional blocks of Fig. 4.7.

1. Input/Output Unit.

As before, it is the task of the input interface element to digitize

the input analog signal ei(t) in the A/D converter and furnish this

digital signal ei(kT) to the SP computer. The output, eo(kT), is in

digital form and is converted to a discrete analog output, e0 (t), by

the output interface element, the D/A converter.

A/D Conversion. The A/D converter will be such that it may trans-

form ei(t) into a two's complement binary representation and thus will

be used as the input interface of the SP computer. Word size may vary

from several bits up to sixteen bits including the sign bit. It is

assumed that an A/D converter which meets the resolution and speed

requirements of the SP computer is available.

A 16-bit input register is used to hold the A/D converter output.

The input register functions to maintain constant values for the input

data bits during the period they are used. After each conversion the

A/D converter produces an end-of-conversion (EOC) signal which is used

to load the new digital word into the input register. If the A/D

converter wordlength is smaller than sixteen bits, the remaining bits

of the input register must be filled in with the sign bit or zeroes.

D/A Conversion. Since the D/A converter is the output interface

element, the selection of a D/A converter type is determined wholly by
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the requirements placed on its output signal by the external system.

This may lead to a D/A converter which converts a specified number of

bits into either a unipolar or bipolar analog signal, the external

system may require a pulse-width-modulated.voltage signal, or even yet,

may require a digital input, whereby a D/A converter is not needed.

For the particular micro-programmable digital filter being discussed,

the D/A was chosen so that a bipolar analog voltage may be presented

at the output.

2. Arithmetic Unit.

It is the purpose of the Arithmetic Unit.to perform the multiplica-

tion and accumulation operations required to solve the difference

equations of the digital filter programming forms described earlier.

A major portion of the Arithmetic Unit consists of a high-speed

multiplier. Inputs to the Arithmetic Unit are the multiplier (coefficient

register), the multiplicand (variable register), and the accumulator

register. Both.multiplier and multiplicand inputs are 16-bits long

and are coded using the two's complement representation. The output

of the high-speed multiplier is a 34 bit, two's complement number which

is stored in the accumulator register.

High Speed Multiplier and Accumulator Register. The data input

registers (coefficient and variable) and the data output register

(accumulator) are organized to permit the multiplication of the contents

of the input registers and to add the results to the contents of the

accumulator. The simplified block diagram of the Arithmetic Unit in
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Fig. 4.21 will be used to explain the calculation of an example

difference equation. Note that the input to the accumulator register

is gated. This is necessary since the output of this register is fed

directly into the multiplier, i.e., the next state of the accumulator

register is dependent not only on the multiplier inputs but also its

own present state. Thus once the output of the multiplier reaches a

stable state the data is gated into the accumulator register.

The example difference equation requires two multiplications,

with the results of each added to the contents of the accumulator

register. Before starting the calculations, the accumulator register

is cleared. Its initial contents are denoted by (Acc)
0
. Note that

the accumulator register supplies an input to each column (which corres-

ponds to a Wallace multiplier tree) of the array. This increases the

size of the multiplier structure slightly but eliminates the time delay

of an adder network which would other wise be necessary to add the

contents of the accumulator and the multiplier output. After the

first multiplication, the result is gated into the accumulator, be-

coming (Acc)l. For accumulation of the second product, alei(kT - T),

(Acc)1 and the partial products from the AND gate array are used as

inputs to the free network. The result,

e0 (kT) = (12/16)(10/16) + (-10/16)(-6/16) = 180/256

is gated into the accumulator register after sufficient time for the

inputs to propogate through the Wallace multiplier trees.
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Coefficient Register Variable Register

___t___

I_____ Gate Multiplier
Output to

Accumulator Register

V
Example difference equation:

eo(kT) = aoei(kT) + alei(kT - T)

let a
o
= 0.75 = 12/16 = 0.1100

al = -0.625 = -10/16 = 1.0110

ei(kT) = 0.625 = 10/16 = 0.1010
ei(kT - T) = -0.375 = -6/16 = 1.1010

0.1100
0.1010

0.00000000
0.00000000
0.0001100
0.000000
0.01100
0.0000
0.01111000

(Acc)0

(Acc)1 = 120/256

1.0110
1.1010

0.01111000
0.00000000
1.1110110
0.000000
1.10110
0.1001

1
0.10110100

Fig. 4.21. Calcuation of example difference
equation by Arithmetic Unit.

High-Speed
Multiplier

Accumulator Register

(Acc)l

(Acc)2 = 180/256

!

I
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The first multiplication and accumulation operation is straight-

forward since both the multiplier and multiplicand are positive numbers.

However, this is not the case for the second operation. Note, that if

the product of the multiplier bit and the multiplicand sign bit is a

"one", it must be repeated in the left-most positions. In the first

operations, this product was "zero" in all cases and thus the left-

most fill-in positions contain all zeroes. Also, note that the

negative multiplier in the second operation requires that the last

partial product term be the two's complement of the multiplicand.

This is accomplished by taking the one's complement of the multiplicand

and forcing a "1" into the Wallace tree for the LSB of this partial

product. This procedure is taken care of by the partial product

generation logic of the high-speed multiplier and is presented in

detail in [12].

Every phase of the multiplier has been demonstrated, except the

establishment of the length of the accumulator register. Multiplying

two 16-bit, sign two's complement numbers yeilds a 31-bit product.

Since the direct digital filter programming form requires the summation

of the greatest number of products (5) in the solution of any single

difference equation, this sets the required length of the accumulator

register at 34 bits. This means that if two maximum size 16-bit

numbers are multiplied and accumulated five times, a 34-bit register

would be required to express the sum.
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Reduction Logic. There are several register lengths in the SP

computer which need to be analyzed; the 34-bit accumulator register,

the 16-bit data locations in the variable storage, and the N-bit D/A

converter. This is brought about by the use of the solution of the

difference equation in later calculations or as an output, eo(kT).

In the first case, this 34-bit solution must be stored in a 16-bit

location. Therefore it is necessary to quantize the output of the

accumulator register to 16 bits. In the second case, it is also

necessary to reduce the word length, since a 34-bit D/A would be both

expensive and impractical. Thus the need for reduction logic has been

clearly established.

The number of bits in the output variable remaining after quantizing

the contents of the accumulator register is determined by the size of

the D/A converter. For an N-bit D/A converter the reduction logic may

select the first N least significant bits (LSB's), the first N most

significant bits (MSB's) or any intermediate group of N bits.

This selection of output data bits is accomplished by writing

into the variable storage a shift key word for each quantize instruction

in the program memory for a particular programming form. Part of the

instructions will contain the address of this shift key, which is read

from storage and gated into the reduction shift register, the contents

of which determine those bits of the accumulator register to be loaded

into the D/A or the variable storage. This is done by choosing the

appropriate bits of the accumulator and shifting these bits to the

left until they occupy those positions with output lines.
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3. Memory.

Each of the sections of memory shown in Fig. 4.19 provides

storage for a specific type of data. The memory, as previously dis-

cussed, is not only used for storage purposes, but is also utilized

to perform the time delay operations which are required to calculate

the difference equations. Included in the description of the memory

sections will be the memory address registers, the address select

logic and the data select logic.

Coefficient Storage. Upon selection of a transfer function and

a filter programming form, it is necessary to store the proper filter

constants and coefficients to be used in the solution of the difference

equations. The coefficient storage is a high-speed Read/Write memory

which is composed of two memory modules. Each module has addressable

storage locations for sixteen 8-bit words. Proper connection of the

modules yields 9 (16 x 16)-bit memory as shown in Fig. 4.22.

Data is manually written into the coefficient storage locations

through the use of the data register, the memory control switch, manual

address load pulse, and the manually controlled write pulse on the

control panel. The address select logic in Fig. 4.22 is necessary

to allow the coefficient address to be chosen from the control panel

address register when manually writing coefficeint values into memory

or the first operand address portion of the instruction register when

reading coefficient values from memory.
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Variable storage. The organization of the variable storage, as

shown in Fig. 4.23, is similar to that of the coefficient storage.

Its function is not only that of storing the input, ei(kT), and the

output, eo(kT), but also that of performing time delay. Assume the

input sample, ei(kT) and its previous value, ei(kT - T), are stored in

memory. After the last computation involving ei(kT - T) is completed,

ei(kT) is written into the memory location allocated to ei(kT - T)

where it waits until the next sampling period to be used as ei(kT - T);

thus the time delay operation is performed.

Note that the variable storage requires both data and address

select logic. This is due to the variable storage being used by a

multiple of sinks and sources. Data inputs to the variable storage

may come from either the control panel, A/D, variable register or the

reduction logic. The variable storage may be addressed by the control

panel or the second operand address portion of the instruction register.

Program memory. The program memory functions as a storage location

for the macro-instruction necessary to solve the difference equations

of the various filter programming forms. These instructions are

organized into groups; each group corresponds to a particular

programming form. Within each group, the macro-instructions are

sequentially arranged as needed in the solution of the particular set

of difference equations.

The program memory is a high-speed ROM that has 256 words of 16

bits each. Each word (macro-instruction) is broken into three sections:
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Second Operand Address Manual Data

Manual Address Register I A/D

Address Load
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Variable Register
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Fig. 4.23. Variable storage.
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the op code (4 bits), the first operand address (6 bits) and the second

operand address (6 bits). The op code specifies the operation to be

performed on the operands in the memory located at the addresses

specified by the two address fields. For op codes which require only

one operand (or no operand), that portion of the program memory is

blank, i.e., contains any combination of zeroes and ones. An example

is the store input instruction. Here the op code is "0101", the coef-

ficient address is blank and the variable address contains a 6-bit code

specifying the storage location in the variable storage which is to

receive the input data.

Since the program memory contains groups of macro-instructions

for all filter programming forms, it is necessary to be able to locate

the first address in each group once a form has been chosen. The

contents of the program register is translated into the program memory

address of the first macro-instruction for each filter programming

form. Next, the sample clock gates the translated code into the program

memory address register (PMAR) and the first macro-instruction is

accessed by a memory read pulse. First and last in every sequence of

macro-instructions is a start A/D instruction. This is necessitated

by the overlapping of the instruction and execution cycle.

In order to program the SP computer, it is necessary to code

each digital filter form using 4 bits. Table 4.1 presents the coding

scheme for the filter being described in [12].
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TABLE 4.1. Program Code

Program Register Contents

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1111

Digital Filter Programming Form

Direct

Modified Direct

Standard

Modified Standard

Canonical

Modified Canonical

Parallel

Cascade

Modified Cascade

Structure XI

Structure XII

Test Mode
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As an example of the sequence of macro-instructions in the program

memory, consider the direct programming form with the difference

equation,

eo(kT) = aOei(kT) + alei(kT - T) + a2 ei(kT - 2T)

(4-18)

-bleO(kT - T) - b2 eo(kT - 2T)

Table 4.2 presents a word description of the macro-programming

instructions for this form.

Notice that during the time the A/D is converting the analog

voltage signal to a digital signal the computer is calculating the

portions of the difference equations that do not require the digitized

input, ei(kT). This is intended to minimize the time delay between the

input sample and its output response.

The macro-instruction "Store (variable)" means load the contents

(where "contents" is denoted by the enclosing parentheses) of the

variable register into the specified address of the variable storage.

Store (reduction logic) means to write the output of the reduction

logic into the variable storage. In order to permit the use of A/D

converters with different conversion rates, a "wait on A/D" instruction

is incorporated. If the converison is complete at the time that this

instruction is reached, the next instruction "Store input" is executed;

otherwise, the computer idles until it receives the end of conversion

signal form the A/D. However, there may be instances when a high-speed
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TABLE 4.2. Program Memory Contents for Direct Form

Op Code First Operand Address Second Operand Address

Start A/D

Clear Accumulator

Multiply & Accumulate

Multiply & Accumulate

Store (variable)

Multiply & Accumulate

Multiply & Accumulate

Store (variable)

Wait on A/D

Store Input

Multiply & Accumulate

Quantize (Acc)

Store (Reduction Logic)

Quantize (Acc)

Load D/A

Reset RMAR & Halt

Start A/D

a2

a1

a0

e
i
(kT - 2T)

ei(kT - T)

e
i
(kT - 2T)

e0 (kT - 2T)

eo(kT - T)

e0 (kT - 2T)

ei(kT - T)

ei(kT - T)

Shift Key

e0 (kT - T)

Shift Key
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A/D converter is employed. In this case the input ei(kT) is stored

and not utilized in the calculations until all other multiplications

are performed. This may also be an unnecessary delay in the response

of the filter. Thus, it may be appropriate to postpone the "Start

A/D" instruction in the program to ensure that the "Wait on A/D"

instruction places the computer in an idle state.

The codes for the macro-instructions are listed in Table 4.3.

This table is used to generate Table 4.4, which presents the actual

contents of the program memory, the variable storage and coefficient

storage for the direct filter programming form. Addresses for the program

memory are encoded in octal in Table 4.4.

Note that in Table 4.4 the first and second operand address

fields are 6-bits, while the actual memories (coefficient storage and

variable storage) have only 4-bit addresses. Thus after loading

the instruction register only the four right-most bits of each of the

address fields are used as addresses for reading the contents of the

coefficient and variable storages. Notice, also, the shift key word

in the variable storage at location, 0100. This shift key is requested

by the quantize op code, 0111, and is loaded into the reduction shift

register. A shift key word exists for each quantize instruction.

Space is allocated in the program memory for the remaining pro-

gramming forms. They will not be illustrated since one may get an

idea of their structure from observing the direct programming example.
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TABLE 4.3. Macro-Instruction Op Codes

Op Code Operation

0000 Start A/D

0001 Clear Accumulator

0010 Multiply & Accumulate

0011 Store (variable)

0100 Wait on A/D

0101 Store Input

0110 Load D/A

0111 Quantize (Accumulator)

1000 Store (Reduction Logic)

1001 Halt

1010 Reset PMAR and Halt

Not Used

1111
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TABLE 4.4. Memory Contents for Direct Form.

Program Memory

(Address)8

000
001
002
003
004

005
006
007
010
011

012
013
014
015
016
017
020

Op Code

0000
0001
0010
0010
0011

0010
0010
0011
0100
0101

0010
0111
1000
0111
0110
1010
0000

First Operand
Address

000000
000001

000010
000011

000100

Second Operand
Address

000000
000001
000000

000010
000011
000010

000001

000001
000100
000011
000101

Coefficient Storage

a2
al
-b2
-ba
ao0

Address

0000
0001
0010
0011
0100
0101

Variable Storage

ei(kT
ei(kT
eo(kT
e0 (kT
Shift
Shift

- 2T)
- T)
- 2T)
- T)
Key
Key

Address

0000
0001
0010
0011
0100
0101



3-93

Program Memory Address Register. Macro-instructions retrieved

from the program memory are read from memory addresses contained in

the program memory address register (PMAR). Inputs to PMAR came from

the code translator and the control unit. Data from the code translator

is loaded into PMAR by the sample clock, whereas, upon receiving the

control pulse, "up date PMAR", PMAR performs the operation

(PMAR) + 1 - PMAR,

and now contains the address for the next macro-instruction. Since

there are 240 addresses in the program memory, the PMAR must be eight

bits long.

4. Control Unit

The program for a digital computer consists of a set of machine

operations such as addition and multiplication. Instructions for these

operations have been referred to as macro-operations. Inside the SP

computer these operations are further decomposed into a set of elementary

operations called micro-operations. Count, shift, gate the memory

address register, are examples of micro-operations. Normally, in

general purpose computers, macro-instructions are at the programmer's

disposal and may be readily changed by re-writing the program. However,

as previously described, in this SP computer the macro-instructions are

pre-programmed in the program memory. These instructions are sequentially

read from the program memory and loaded into the instruction register.

In the op code portion of the instruction register is a 4-bit code
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which specified the macro-instruction to be executed. This op code

is fed to the control unit of the SP computer and a sequence of micro-

operations is performed for each op code.

It is the purpose of the Control Unit to translate the op codes

and supply all synchronization and control pulses to the rest of the

SP computer. A block diagram of the Control Unit elements is shown in

Fig. 4.24. These elements include the instruction register, a decoder,

a four-state counter, a timing level generator, a control matrix, a

fundamental clock and an operation flip-flop, D. The organization and

function of each of these elements is discussed below.

Instruction register and decoder. As macro-instructions are re-

trieved from the program memory, they are stored in the instruction

register until the instruction is executed and a new one is retrieved.

Only the op code portion of the instruction register is employed by the

rest of the Control Unit, while the operand addresses are sent to the

coefficient and variable memory address registers.

There are eleven macro-instructions which are used by the SP computer

to solve the difference equations of the various digital filter programming

forms. Each op code portion of a macro-instruction is translated by

the decoder into one of the macro-operations, fi, i = 0, 1, 2, "' 10.

For each op code, the decoder activates one and only one output line.

Fundamental clock. Employed as a fundamental clock is a free-

running multivibrator whose frequency is obtained after determining a

basic timing cycle for the SP computer, which can be done after the
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detailed logic design of each functional unit is complete. Note that

a clock signal that is 1/4 as fast as the fundamental clock is used as

input to the Control Unit. This is because one of the micro-operations,

quantize (Acc), is a serial operation and requires these high frequency

pulses in order to avoid slowing the operation of the SP computer.

Four stage counter and timing level generator. There are fourteen

micro-operations (from which eleven sequences of micro-operations are

formed for the eleven macro-operations), and the control signals for

these micro-operations are designated as mj, j = 0, 1, -'', 13. The

number of timing levels for the execution of the macro-instructions

will require six states of the four stage counter, L, for all instructions

except multiply and accumulate, whose last micro-operation is performed

on state fourteen. Thus this macro-instruction is used as a control

input to the counter.

Control matrix. Basically, the function of the control matrix

is to provide the proper combination of op codes and timing levels.

Essentially, the control matrix is an AND-OR switching matrix.

Operation flip-flop. Controlling the operation of the SP computer

is the operation flip-flop, D. If D is set, clock pulses enter the

four stage counter under normal operations. Flip-flop D may be set by

three signals, the manual start, the end-of-conversion (EOC) signal

from the A/D and the sample clock pulse. It may be reset by the control

pulses, wait on A/D, halt, and reset PMAR and the manual stop button.

Note that when the computer is halted by reset PMAR, the first instruction
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to be executed is already in the N register ready for execution. Care

must be taken to ensure that EOC does not occur before the wait on

A/D signal during the execution of a given filter programming form.

5. Operator Control Unit.

As mentioned earlier, the Operator Control Unit is used in manually

programming the SP computer to realize the transfer function, D(z), in

the selected digital filter programming form. Referring to Fig. 4.19,

the elements comprising the Operator Control Unit are the manual data

register, the manual memory address register, two write pulse circuits

(one each for the coefficient and variable storage), a program register,

a memory control switch, a manual start pulse circuit, a manual stop

pulse circuit, two pulse circuits for manually loading the coefficient

and variable memory address registers, a row of sixteen indicator lights

and a monitor switch, and a sample clock enable switch.

Each of the registers may be implemented with single pole-double-

throw (SPDT) switches for ease of setting and resetting.

Data may be entered into either the coefficient or variable storage

by setting the manual memory control switch to the "1" position, setting

the switches of the manual data register to the binary data value,

setting the address into the manual address register, loading this

value into the coefficient or variable memory address register, and

pressing the coefficient or variable write button. Notice the data

register and memory address register are common to both the variable

and coefficient storage since each employs a separate load address and

write pulse.
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Previous discussion has described the functions of the program

register, manual start button and the manual stop button. The indicator

lights and monitor switch function in checking the operational status

of the SP computer.

From the above discussion, one should understand the basics of a

microprogrammable digital filter implementation. If further details

are desired, one may refer to [12].

Next to be discussed will be the aspect of timesharing digital

filter implementations.

Time-Sharing of a Digital Filter Implementation

For many applications of a digital filter it is sometimes necessary

to provide discrete-time filtering for several independent loops or

channels with examples being in control systems and digital communications

systems. This may be accomplished with several digital filters but it

would be more practical, more reliable, and more economical to provide

this filtering with a special-purpose computer organized and programmed

as a time-shared digital filter [ 9].

There are two basic ways in which a digital filter may be time-

shared. The first of these is in multi-loops and the second is for

higher order D(z) realization.

Fig. 4.25 illustrates a digital filter being time-shared in N

control loops. It is seen that there is an enormous amount of hardware

saved by doing this. First there is only one computing element (SP
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computer) required and second only one A/D is required, whereas if

time-sharing weren't used N computing elements and N A/D converters

would have been required.

Fig. 4.26 illustrates a digital filter being time shared for

a higher order D(z) realization. This can be done by cascade or

parallel methods as shown in parts (a) and (b) of the figure. Cascading

or paralleling filters to obtain a higher order realization is preferred

because of the word length problem (resolution) that is encountered

for a single high order D(z) realization. Time sharing of a single filter

as shown in Fig. 4,26 can be easily accomplished if the assumption is

made that n is even and that D(z) can be factored into n/2 second-order

filters Fl(Z), '', Fn/2(z) and partial fractional into n/2 second-

order filters Pl(z), P2(z), "'Pn/2(z). Each of the second-order filters

may be realized by any of the available programming forms. The total

transfer function D(z) still has the same memory requirements, the same

number of memory locations in each filter storage unit, but now the

variables and coefficients of each second-order filter are the signals

stored. Since each second-order filter has the same program, the

control sequence generator just repeats the same sequence n/2 times

during each sampling interval.

Both cascade and parallel techniques are desirable methods for

realizing higher order D(z)'s, but the additional summing junction

necessary with the parallel method makes the cascade method better

suited for a modular realization.
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For a better understanding of time-shared digital filter implemen-

tations, let us look at the organization of a SP computer realization

of a 2nd order time shared digital filter which may be time shared in

two loops or cascaded or paralleled for the realization of a 4th order

D(z).

Fig. 4.27 is a functional block diagram of the SP computer

realization of two digital filters. Like previous SP computer realiza-

tions, the computer functions are still divided into four main categories;

input-output equipment, memory unit, arithemtic unit, and control unit.

The input-output equipment provides the interface between the analog

system and the digital computer. The analog inputs are sampled via the

multiplexer and A/D, and the output samples are demultiplexed and shared

in the buffered D/A's.

The arithmetic unityfor this type realization, also must be able

to perform multiplication, addition and subtraction. The selection

of an arithmetic unit must first entail the selection of serial or

parallel type arithmetic operation. Usually this choice means a decision

must be made between computational speed and hardware economy. The choice

made here was a reasonable fast and economical method where a parallel

binary accumulator and two shift registers are used to add up the pro-

duct terms as previously discussed. Serial arithmetic is used for

partial product multiplication in the implementation discussed in [18].

As before, the reduction logic truncates to maintain word-length

compatibility, and saturation logic sets the output word to maximum

value when its range is exceeded.
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The memory is divided into two identical storage units for filter-1

storage and filter-2 storage. Corresponding filter signals such as

e
l
(k - 1) (short notation for el(kT - T)) and e2 (k - 1) have the same

relative storage locations in their respective storage units and have

the same addresses within their respective modules. The memory is

controlled by Read and Write commands (not shown) and two address

commands: a filter address to select the proper storage unit, and a

signal address to select the proper signal location in a storage unit.

The filter selection logic is controlled by the filter address and

determines which storage unit is addressed by the signal address. This

modular arrangement of the memory is .ideally suited for the "wired-OR"

feature of integrated circuit memory. With this, feature storage for

additional filters can be added by hard-wiring inputs and outputs

of the storage units and simple modification of addressing.

The control unit contains the master control unit that provides

the multiplexing by means of the filter address and determines the

sampling rate for each filter by controlling the start of each difference-

equation computation. The control unit also contains the control-sequence

generator which provides a sequence of instructions, initiated by a

pulse from the master controller, to control the difference-equation

computations. Thus the hard-wired program of the control-sequence

generator determines the programming forms of the filters. To maintain

simplicity, the same programming form is chosen for each filter, and

hence the same sequence is generated each time regardless of which filter
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is being addressed and regardless of the number of filters being realized.

A priority system is provided so that once the computation of a difference

equation has begun, it is carried to completion even if it means that a

sample for another filter must be omitted.

Range Switching Digital Filter Implementation

For many applications of digital filtering, it is desirable to have

a very fast sampling rate. An example of this is when very high frequency

signals are being filteredland since the sample rate must be at least

twice the highest signal frequency, it is seen that very high rates

can be required. The limiting factors for a filter's sampling rate

are the conversion speed of the A/D and D/A input-output system and

the time required in the arithmetic calculations of the difference

equations being realized. The most important factor which limits the

speed of arithmetic calculations is the bit-lengths of the data processed

internally by the filter. This includes the length of the input word to

the filter, the internal variable wordlength (length of ei(kT - nT),

m(kT - nT), etc.) and the output wordlength. In general, the shorter

these wordlengths are the faster the arithmetic calculations can be

performed, with this being true for serial and parallel arithmetic

type filters. Also, as a result of shorter wordlengths, the filter

hardware is reduced.

Because of the quantization error introduced by shorter wordlengths,

a scheme must be devised to eliminate the larger quantization errors
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introduced by the shortened words. A method was devised to do this

and the resulting filter was called a "Range-Switching" digital filter

as described in [8]. In short, the filter with reduced wordlength

performed as if it had a much longer wordlength, under certain conditions.

A block diagram of the filter described in [81 is shown in Fig.

4.28. Its operation will now be described.

The A/D converter converts the analog input signal into an 8-bit

digital approximation allowing the digital output of the converter to

have an integer value ranging from 0 to 255. The input select logic

selects either the four MSB's or the four LSB's of the A/D output to

be the input to the SP computer. The scheme used is to select the four

LSB's if all the four MSB's are logic "0" or the four MSB's if either

one is a logic "1" for a signed magnitude code. It is seen from this

that the input to the filter is in either of one or two ranges. If

the input to the SP computer is from the lower range (four LSB's),

it may have any integer value between 0 and 15 in steps of 1. If

the input is in the higher range (four MSB's) it may have any integer

value between 16 and 255 in steps of 16. Of the two ranges, it is

seen that the higher range has the larger quantization step h and it

is 16 times that of the lower quantization step. This also means

that a four bit combination coming from the higher range input would

represent a magnitude 16 times the same bit combination combing from

the lower range input as shown in Fig. 4.29. Because of this,

before the special purpose computer can process its four bit input each

sample period, it must know the range from which it comes to properly reweight
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the internal variables if a range change is seen from the last sample

period. The internal variables of the SP computer are 8-bits long and

can possibly be multiplied or divided by a factor of 16 each sample

period before calculation of the difference equations start or their

weight may remain the same. If there is a change in the input from the

higher to lower range the internal variables are multiplied by a factor

of 16 (the relative magnitude change of the input). It must be

remembered that this is being done to keep the weight of the input

relative to the internal variables. If the input represents a small

value, the internal variables must be increased to make the input appear

small. The opposite of this takes place when there is a change from

the lower to the higher range. In this case the internal variables

must be made to appear small to the large input, so they are divided

by a factor of 16. If there is no range change between sample periods,

the weight of the internal variables remains the same. The output select

logic in Fig. 4.28 is employed to properly weight the 12-bit output

of the filter. The output will have its greatest weight when the input

for a particular sample period was in the higher range. If the input

for a particular sample period is in the lower range, the output select

logic weights the output bit configuration such that its analog voltage

level representation is 1/16 of that of the same bit configuration with

the input in the higher range.

It was mentioned earlier that the "range-switching" scheme was

used to reduce wordlengths but at the same time obtain the accuracy at
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the filter output of a much longer wordlength filter. Also, the "range-

switching" filter might be thought of as a technique by which for a

fixed wordlength input, the quantization errors are reduced by the

range-switching process.

Filters of the "range-switching" design seem to have a bright

future, especially with the advent of LSI. Using a reduced wordlength

modular filter design, it would be very easy to have a digital filter

composed of four or five LSI chips.

One application of "range-switching" filters that has great promise

is that of filtering in nulling type control loops. First, the design

saves hardware because of the reduced wordlengths, it is fast and because

of the design of the filter, the quantization step length decreases as

the loop error is nulled toward zero giving the loop finer granularity

control to keep the error signal closer to zero.

A block diagram illustrating the components of the SP computer

realization of the "range-switching" digital filter is shown in Fig.

4.30.

The input/output unit consists of a successive approximation type

A/D converter, a 12-bit D/A converter and the input/output select logic

which are combinational circuits that select the input word and insert

the output word into the proper bit position of the D/A. As previously

mentioned the output of the filter is an 8-bit word. The 12-bit D/A

converter is required such that the 8 output bits can be inserted into

the 8 MSB positions of the D/A when the input is in the higher range
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and in the lower 8-bit positions of the D/A when the input of the filter

is in the lower range. In effect, a particular bit combination that

is inserted into the lower 8-bit positions will have an analog voltage

level 1/16 of what it would have been if inserted into the 8 MSB

positions. It should be noted that the weighting factor of the output

is the same as the input.

Parallel fixed point arithmetic is used in the arithemtic unit

in conjunction with shift registers, an accumulator, and the reduction

logic to calculate the difference equations.

The memory is composed of the coefficient storage (SPDT Switches),

internal variable storage (flip-flop registers), and the output storage

(flip-flop register). The weighting of the internal variable memory is

under command of the controller. Since fixed point arithmetic is used,

multiplication or division by 16 is easily accomplished by shifting the

internal variables left or right respectively four places relative to

the binary point. If a weighted bit is lost when left shifting, provisions

are made for the 8-bit internal variable to be saturated (all one's for

a signed magnitude code).

In concluding the discussion of the hardware implementation, the

control unit is composed of the control function generator and the data

transfer logic. In addition to the normal tasks of the control function

generator, it has the duty of deciding how the internal variables must

be weighted each sample period.



3-112

A common question arises as to what is the limit on bit-length

reduction. The most general answer to this is it depends on the appli-

cation of the filter. The method of determining the minimum bit length

is the trial and error technique of simulating the filter in whatever

configuration it is to be used. As an example, the above described

"range-switching" filter was used in a pendulous integrating gyroscopic

accelerometer control loop. Time simulations in FORTRAN of the loop

with the filter inserted demonstrated that the loop could be stabilized

for pulse inputs to the loop with the filter having a 4 magnitude bit

input, 6 magnitude bit internal variables and a 8 magnitude bit output.

From these bit lengths it is seen that an LSI realization of the filter

would be quite small and simple.

At the present time further work is being done to investigate the

possibility of further bit length and hardware reductions of a digital

filter such that LSI implementations will even be more attractive.

LSI Circuit Digital Filter Implementation

The first complete LSI implementation of a digital filter was

designed and built by Autonetics Division of North American Rockwell,

Anaheim, California. Concerning the state-of-the-art of digital filter

implementation techniques, the design was the ultimate. The design

is completely modular and therefore it is easily adaptable for an

LSI realization. There are 2 main chips, a serial-parallel multiplier

chip and a shift register chip.
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The serial-parallel multiplier chip is arranged such that it can

perform all arithmetic functions required for a digital filter implemen-

tation: addition, subtraction, and multiplication. The shift register

chip contains shift register memories for the internal variables, input

word, output word and also the control circuitry of the filter.

The interface elements of the LSI implementation are external to

the filter. The A/D output is fed into the filter in a serial manner

and the filter output is also serial. The binary code used by the

filter is two's complement.

The internal wordlengths of the filter are adjustable. To change

them, all one has to do is to make connection changes on the chips.

The filter as designed has fixed length coefficients and each being

16-bits long. They are easily set by single pole double throw switches.

The filter realizes any first, second, or third order D(z) which

has real poles in the parallel programming form.

Commercial Digital Filters

Now that several digital filter implementation techniques have

been presented, a short discussion of digital filters available on the

commercial market will be in order. Because of the relative newness

of the area and the recent advent of LSI circuitry, there are few

commercial builders around, two of which are listed below.

One of the first builders of a digital filter for the commercial

market was the Rockland Systems Corporation of Blauvelt, New York. They
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now produce a line of programmable recursive digital filters which meet

a wide variety of signal processing requirements. All of their filters

are composed of four basic components - adders, multipliers, shift-

register delays, and memory with a modular approach being adapted to

provide the greatest possible flexibility and efficiency as is described

in [18,19]. The basic components are usually combined into second-order

building blocks (two poles and/or two zeroes) and these blocks are then

combined or multiplexed to realize any number of filters of any desired

order. Programmability is achieved by employing a read/write coefficient

memory. Fixed filter characteristics may be obtained with a read-only

memory. Rockland produces a series of filters designed in the above

manner.

Rockland also produces a programmable tenth-order recursive digital

filter which can realize arbitrary "all pole" designs such as Butterworth,

Bessel, or Chebyshew low-pass, high-pass, or band-pass filters. Up to

10 pole positions can be programmed through ten 12-bit filter coefficients;

while up to 10 zero's can be positioned at DC or the Nyquist frequency,

or can be deleted altogether. Sampling rates of up to 100 KHz can be

achieved.

Electronic Communications, Inc. (ECI) is the second commercial

builder of digital filters to be discussed [26].

The filters produced by ECI are the nonrecursive type and they are

actually signal-processing instruments that perform the convolution

integral in order to effect a filtering function. This means the filters

3
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work strictly in the time domain and is represented by its impulse

response and not by its amplitude and phase characteristics as are some

nonrecursive filters. The analog input signal to this filter must be band-

limited, and is accomplished by using a low-pass analog prefilter. The

input bandwidth is restricted to less than half the sampling rate. One

of their more common filters with a sample rate of 10 KHz has a pre-

amplifier cut-off at 2.5 KHz.

The ECI digital filter has two identical shift register memories.

One stores samples of the band-limited input signal, while the other

contains samples of the impulse function of the filter that is desired.

The sampled impulse response is represented by coefficients that are

the various amplitudes of samples spaced equidistant along the time axis.

The coefficients are obtained by using computer software available

from the company and programmed into the digital filter via a paper

tape. The tapes are set up so that the programs can be put on a time-

shared computer system. Up to 200 coefficients can be stored in the

sampled-impulse-response memory.

The contents of the two memories are fed into a single multiplier

section that forms the product of corresponding samples form each

memory. The output of the multiplier goes to an accumulator that puts

out the digitized filtered version of the input waveform.

The digital filter designed in this manner can only simulate zeroes

for the filter transfer function because of its nonrecursive nature. This

does not seem to limit its use though, as any filter can be represented
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by its impulse response. There are few recursive filters whose impulse

response cannot be satisfactorily represented by ECI's nonrecursive filter.

This concludes the discussion on SP computer implementations. FFT

hardware realizations will now be discussed.



V. FFT HARDWARE

We have previously seen that a digital transfer function, D(z),

may be calculated by the FFT. The theory behind this was discussed,

enabling the discussion of FFT hardware to now follow. Three area's

of FFT hardware will be discussed starting with commercial FFT pro-

cessors that are available and concluding with a discussion of the

MIT fast digital processor.

Commercial Equipment

There are several manufacturers of FFT processors. One of these

is the Raytheon Computer Co. of Santa Ana, California. This company

manufactures what it calls an "Array Transform Processor." This

processor has several capabilities, among them FFT and Inverse FFT

processing, convolution integral processing, complex.multiplying,

complex spectral magnitude processing, real multiplying, read add/

subtract processing, scanning of arrays and array movement.

The Raytheon array transform processor is an auxiliary processor

of the Raythean 700-Series computers and is a hardware array processor.

It comes in several models with the models differing in the number of

data points that can be handled (256 - 16384) and the wordlengths available.

Another company which manufactures a hardware FFT processor is

the Elsyter Co. of Syosset, New York. Their processor is labeled as

the 306/HFFT. It will calculate the direct or inverse FFT and it is

contained within the mainframe of its host NOVA 800 computer for more
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efficiency and small size. It has a core memory of 4096-16 bit words

expandable to 32768 words. It has the features of hardware multiply

and divide, teletype interface, array complex coordinate converter to

perform Cartesian to polar and vice-versa conversions without program

intervention and an hardware FFT interface-subroutine to control the

operation of the hardware FFT.

It can be used in three modes: 1) Stand alone peripheral FFT

processor, 2) part of a free standing spectrum analyzer system, and

as 3) a free standing computer.

The last commercial FFT processor to be discussed will be the "FFT

256 FAST FOURIER TRANSFORM ANALYZER," a "stand-alone" processor manu-

factured by Unigon Industries, Inc., Plainview, Long Island, New York.

It is a smaller processor than the one previously discussed in that it

has a capacity of 256, 1024, or 4096 real points and a wordlength of

8-bits.

This processor performs the functions of the direct and inverse

FFT, power spectrum and cross power spectrum analysis, square spectrum

analysis, auto correlation, cross correlation, convolution, convolution

spectrum and auto correlation. Each one of these functions is switch

selectable. Let us now discuss a fast digital processor designed

by MIT.

MIT Fast Digital Processor [27]

There are many techniques by which GP digital computers may be

modified or enlarged to increase the operating speed. As an example,
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speed savings may be attained by attaching fast multiply and divide

hardware or by having separately addressable memory modules so that

instruction cycles and data cycles may be overlapped. Increases in

speed results from attaching arithmetic hardware which performs high

speed special operations such as digital filtering and discrete spectrum

analysis. If this arithmetic hardware is added in addition to a high

speed memory, speed increases on the order of 40 to 100 can be attained

in performing operation such as the FFT. This technique has a disadvantage

in that it requires programming that is not easily structured, which

in turn decreases the speed advantage of the special hardware.

It was because of this that emphasis was directed toward incorporating

more general purpose features into a signal processing computer structure.

What resulted was the MIT fast digital processor which is a general

purpose digital attachment to a UNIVAC 1219 computer. The architectual

changes required to increase the speed of repetitive arithmetic operations

for signal processing can be classified as 1) the use of scratch pad

memories, 2) pipeline schemes, and 3) parallel processing.

The fast digital processor (FDP), designed with the above architectural

changes in mind, is able to perform signal processing simulations close

to two orders of magnitudes faster than present conventional digital

computers. As an example, a vocoder simulation which normally requires

about 200 times real time on a standard computer, could be programmed

to operate close to real time on the FDP.
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The main applications of the FDP are in the areas of communication,

radar, speech processing, biology, medicine, and sonar.

Fast commercial integrated circuit elements and a logical structure

which permits each main unit of the machine to operate at maximum

speed enables the FDP to obtain a speed advantage.

The arithmetic section is designed to perform efficiently the

sum-of-products operations which are most important to recursive

digital filtering, the FFT and correlation operations.

The data memories are structured so as to exchange data with the

arithmetic section at maximum efficiency.

The control uses a separate memory for storing instructions. Its

structure allows the data memories to operate at maximum speed.

Let us briefly describe some of the main features of the FDP

structure.

FDP structure. Fig. 5.1 shows the most important data transfer

paths of the FDP. Programs are run from the memory MC , which controls

the main data flow from memories Ma and Mb to all elements shown in

Fig. 5.1. Since Mc is intended to be a small memory, longer programs

can be stored in Ma and Mb and block transferred to Mc when needed.

Ma, Mb, and Mc are addressed independently and can therefore be operated

in parallel. Except for block transfers from Ma and Mb, the control

memory Mc cannot be written into making the programs run by the FDP

almost non-self-modifying.
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The parallelism inherent in the FDP is partially indicated in

Fig. 5.1. Listed below are a few special features incorporated for

speed:

1) four arithmetic units, each including a'multiplier which can

operate in parallel with the main arithmetic registers;

2) two independently addressable integrated circuit memories,

Ma and Mb with read and write times of 140 ns;

3) a separate instruction memory, which allows overlap of instructions

and data cycles;

4) a double length instruction word which enables two instructions

to be simultaneously executed on the FDP.

The size of Ma and Mb is 1024 words and is addressed by a 10-bit

word. Addressing is indirect, through Md, a 16-register 24-bit integrated-

circuit memory, as is shown in Fig. 5.2. The indexed address for Ma

and Mb is formed by adding the contents of the two 12-bit portions of

Md to Xa and Xb. Writing into Md requires no special instructions

because addresses 0 through 15 of Ma and Mb are wired to control Md

as well as the data memories on a write cycle.

The I/O capabilities of the FDP were minimized deliberately since

the UNIVAC 1219 already supplied most of the necessary I/O control. An

A/D and D/A converter were applied to make the FDP applicable for real-

time processes. The only other I/O path is to and from the mother

computer, the UNIVAC 1219, which will be needed for assemblying and

editing FDP programs and supplying medium size core storage.
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The FDP is an 18-bit fixed point processor. Floating point routines

may be used but must be programmed, as must multiple processor arithmetic.
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